使用Python和SAS Viya分析社交网络

简介: 使用Python和SAS Viya分析社交网络

 


 

本示例分析了使用Python和SAS 在康涅狄格州哈特福德进行的HIV预防高危药物研究的结果。这个社交网络有194个节点和273个边缘,分别代表毒品使用者和这些使用者之间的联系。

 

背景

 

SAS Viya的最新版本提供了用于探索实验问题的全套创新算法和经过验证的分析方法,但它也是基于开放式体系结构构建的。这意味着您可以将SAS Viya无缝集成到您的应用程序基础架构中,并使用任何编程语言来驱动分析模型。


先决条件

尽管您可以继续进行并简单地发出一系列REST API调用来访问数据  但通常使用编程语言来组织您的工作并使之可重复是更有效的。我决定使用Python,因为它在年轻的数据科学家中很流行 。

出于演示目的,我使用一个名为Jupyter的接口,该接口是一个开放的,基于Web的交互式平台,能够运行Python代码以及嵌入标记文本。

 

访问SAS云分析服务(CAS)

SAS Viya的核心是称为SAS Cloud Analytic Services(CAS)的分析运行时环境。为了执行操作或访问数据,需要连接会话。您可以使用二进制连接(建议使用该连接来传输大量数据),也可以通过HTTP或HTTPS通信使用REST API。

 from swat import *
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import matplotlib.colors as colors # package includes utilities for color ranges
 import matplotlib.cm as cmx
 import networkx as nx # to render the network graph
 %matplotlib inline

现在已经加载了S

s = CAS('http://sasviya.mycompany.com:8777', 8777, 'myuser', 'mypass')

CAS服务器将分析操作组织到操作集中。对于此网络分析,我将使用一个名为hyperGroup 的动作集,该动作集只有一个动作,也称为hyperGroup。

 s.loadactionset('hyperGroup')

加载数据

为了执行任何分析建模,我们需要数据。将本地CSV文件上载到服务器,并将数据存储到名为DRUG_NETWORK的表中。该表只有两列数值类型的FROMTO

 inputDataset = s.upload("data/drug_network.csv", casout=dict(name='DRUG_NETWORK', promote = True))

在分析建模期间,您通常必须更改数据结构,过滤或合并数据源。这里的put函数将两个数字列都转换为新的字符列SOURCETARGET

sasCode = 'SOURCE = put(FROM,best.); TARGET = put(TO,best.);\n'
 dataset = inputDataset.datastep(sasCode,casout=dict(name='DRUG_NETWORK2', replace = True))

数据探索

建立分析模型时的常见任务是首先了解您的数据。这包括简单的任务,例如检索列信息和描述性统计信息以及了解数据分布(最大值,最小值等)。下面的示例返回我先前更新的数据集的前5行。

 dataset.fetch(to=5, sastypes=False, format=True) # s

一个简单的汇总统计数据会显示更多详细信息,包括我们数据集中273条边的总数。

 dataset.summary()


图形布局

现在已经完成了前提条件,我们可以深入分析世界。首先,我们将网络可视化,以基本了解其结构和大小。我们将使用先前加载的超组动作,通过力导向算法来计算顶点的位置。Hypergroup还可以用于查找群集,计算图布局以及确定网络度量标准,例如社区和中心性。

 s.hyperGroup.hyperGroup(
    createOut = "NEVER", # this suppresses the creation of a table that’s usually produced, but it’s not needed here
    allGraphs = True, # process all graphs even if disconnected
    inputs    = ["SOURCE", "TARGET"], # the source and target column indicating an edge
    table     = dataset, # the input data set
    edges     = table(name='edges',replace=True), # result table containing edge attributes
    vertices  = table(name='nodes',replace=True)  # result table containing vertice attributes
 )
 renderNetworkGraph() # a helper method to create the graph using networkx package

呈现了以下网络,并提供了图形的第一视图。我们可以看到两个主要分支,并了解高密度和低密度区域。



社区检测

为了了解社交网络中用户的关系,我们将分析个人所属的社区。社区检测或聚类是将网络划分为社区,使社区子图中的链接比社区之间的链接更紧密地连接的过程。同一社区中的人们通常具有共同的属性,并表示他们之间有着密切的联系。

现在,更新后的节点表包含一个附加列_Community_  ,其中包含我们网络中每个节点的值。给定此数据集,我们可以执行基本统计信息,例如跨列的不同计数:

结果表显示,超群确定了我们网络中的24个社区。


让我们看一下最大的5个最大社区,并分析节点分布。

我们没有使用表格输出,而是将获取的行重定向到Python变量中。我们将使用它来生成条形图,以显示前5个最大的社区:


这表明最大的社区13具有35个顶点。以下示例显示社区4中的节点:


最后,让我们再次渲染网络–这次在为节点着色时考虑了社区:


通常,需要根据您的网络规模和期望的结果来调整社区的数量。您可以控制超组如何将小型社区合并为大型社区。社区可以合并:

  • 随机进入邻近社区
  • 进入顶点数量最少的相邻社区
  • 以最大数量的顶点
  • 进入已经具有nCommunities顶点的社区

下面将通过指定nCommunities参数将社区总数减少到5 。


集中性分析

分析中心性有助于确定谁在网络中很重要。重要人物将被很好地联系起来,因此对网络中的其他个人具有很高的影响力。就我们针对吸毒者的社交网络而言,这将表明潜在的病毒传播和个人的相关风险行为。

每个度量标准都表示为节点数据集中的输出列。

让我们使用集中度度量之一作为节点大小再次渲染网络。


 

子集网络分支

从我们的网络来看,社区2中的用户似乎扮演着重要角色。这由社区的整体中心地位,也由该社区中大多数个人的高beetweenness值表明。以下代码过滤并渲染了社区2的网络,仅使我们对该子网络有了更好的可视化。


 

上面的示例使用了标准的二维 导向图布局。在更复杂的情况下,可能还需要在分析网络结构时考虑使用其他维度。

 

相关文章
|
4月前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
150 35
|
4天前
|
监控 安全 Linux
Arista CloudVision 2025.1 - 多云和数据中心网络自动化、监控和分析
Arista CloudVision 2025.1 - 多云和数据中心网络自动化、监控和分析
20 2
Arista CloudVision 2025.1 - 多云和数据中心网络自动化、监控和分析
|
26天前
|
运维 监控 安全
如何高效进行网络质量劣化分析与流量回溯分析?-AnaTraf
在数字化时代,网络质量分析与流量回溯对保障业务运行至关重要。网络拥塞、丢包等问题可能导致业务中断、安全隐患及成本上升。传统工具常缺乏细粒度数据,难以溯源问题。流量回溯分析可还原现场,助力精准排障。AnaTraf网络流量分析仪作为专业工具,能高效定位问题,提升团队响应力,降低运营风险。
如何高效进行网络质量劣化分析与流量回溯分析?-AnaTraf
|
24天前
|
大数据
“你朋友圈的真面目,大数据都知道!”——用社交网络分析看透人情世故
“你朋友圈的真面目,大数据都知道!”——用社交网络分析看透人情世故
70 16
|
1月前
|
数据采集 存储 监控
Python 原生爬虫教程:网络爬虫的基本概念和认知
网络爬虫是一种自动抓取互联网信息的程序,广泛应用于搜索引擎、数据采集、新闻聚合和价格监控等领域。其工作流程包括 URL 调度、HTTP 请求、页面下载、解析、数据存储及新 URL 发现。Python 因其丰富的库(如 requests、BeautifulSoup、Scrapy)和简洁语法成为爬虫开发的首选语言。然而,在使用爬虫时需注意法律与道德问题,例如遵守 robots.txt 规则、控制请求频率以及合法使用数据,以确保爬虫技术健康有序发展。
215 31
|
2月前
|
存储 人工智能 编解码
Deepseek 3FS解读与源码分析(2):网络通信模块分析
2025年2月28日,DeepSeek 正式开源其颠覆性文件系统Fire-Flyer 3FS(以下简称3FS),重新定义了分布式存储的性能边界。本文基于DeepSeek发表的技术报告与开源代码,深度解析 3FS 网络通信模块的核心设计及其对AI基础设施的革新意义。
Deepseek 3FS解读与源码分析(2):网络通信模块分析
|
1月前
|
存储 监控 算法
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
80 7
|
1月前
|
数据采集 数据可视化 数据挖掘
基于Python的App流量大数据分析与可视化方案
基于Python的App流量大数据分析与可视化方案
|
1月前
|
存储 数据库 Python
利用Python获取网络数据的技巧
抓起你的Python魔杖,我们一起进入了网络之海,捕捉那些悠游在网络中的数据鱼,想一想不同的网络资源,是不是都像数不尽的海洋生物,我们要做的,就是像一个优秀的渔民一样,找到他们,把它们捕获,然后用他们制作出种种美味。 **1. 打开魔法之门:请求包** 要抓鱼,首先需要一个鱼网。在Python的世界里,我们就是通过所谓的“请求包”来发送“抓鱼”的请求。requests是Python中常用的发送HTTP请求的库,用它可以方便地与网络上的资源进行交互。所谓的GET,POST,DELETE,还有PUT,这些听起来像偶像歌曲一样的单词,其实就是我们鱼网的不同方式。 简单用法如下: ``` im
66 14
|
4月前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
623 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析

热门文章

最新文章