涉及知识点
树 异或 DFS时间戳
LeetCode2322. 从树中删除边的最小分数
存在一棵无向连通树,树中有编号从 0 到 n - 1 的 n 个节点, 以及 n - 1 条边。
给你一个下标从 0 开始的整数数组 nums ,长度为 n ,其中 nums[i] 表示第 i 个节点的值。另给你一个二维整数数组 edges ,长度为 n - 1 ,其中 edges[i] = [ai, bi] 表示树中存在一条位于节点 ai 和 bi 之间的边。
删除树中两条 不同 的边以形成三个连通组件。对于一种删除边方案,定义如下步骤以计算其分数:
分别获取三个组件 每个 组件中所有节点值的异或值。
最大 异或值和 最小 异或值的 差值 就是这一种删除边方案的分数。
例如,三个组件的节点值分别是:[4,5,7]、[1,9] 和 [3,3,3] 。三个异或值分别是 4 ^ 5 ^ 7 = 6、1 ^ 9 = 8 和 3 ^ 3 ^ 3 = 3 。最大异或值是 8 ,最小异或值是 3 ,分数是 8 - 3 = 5 。
返回在给定树上执行任意删除边方案可能的 最小 分数。
示例 1:
输入:nums = [1,5,5,4,11], edges = [[0,1],[1,2],[1,3],[3,4]]
输出:9
解释:上图展示了一种删除边方案。
- 第 1 个组件的节点是 [1,3,4] ,值是 [5,4,11] 。异或值是 5 ^ 4 ^ 11 = 10 。
- 第 2 个组件的节点是 [0] ,值是 [1] 。异或值是 1 = 1 。
- 第 3 个组件的节点是 [2] ,值是 [5] 。异或值是 5 = 5 。
分数是最大异或值和最小异或值的差值,10 - 1 = 9 。
可以证明不存在分数比 9 小的删除边方案。
示例 2:
输入:nums = [5,5,2,4,4,2], edges = [[0,1],[1,2],[5,2],[4,3],[1,3]]
输出:0
解释:上图展示了一种删除边方案。
- 第 1 个组件的节点是 [3,4] ,值是 [4,4] 。异或值是 4 ^ 4 = 0 。
- 第 2 个组件的节点是 [1,0] ,值是 [5,5] 。异或值是 5 ^ 5 = 0 。
- 第 3 个组件的节点是 [2,5] ,值是 [2,2] 。异或值是 2 ^ 2 = 0 。
分数是最大异或值和最小异或值的差值,0 - 0 = 0 。
无法获得比 0 更小的分数 0 。
提示:
n == nums.length
3 <= n <= 1000
1 <= nums[i] <= 108
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
edges 表示一棵有效的树
预备知识
性质一:n个数进行异或运算。各位的结果等于各数本位1的数量是否为奇数。
推论一: n个数的异或,结果与运算顺序无关。
推论二:异或的逆运算就是本身。
深度优先
以任意节点(比如0)为根,除根节点外,每个节点都有且只有一个父节点。枚举两个非根节点A,B,A≠ \neq=B。设整个树的的异或值c,子树A、B的异或值分别为a,b。删除后A和B连向父节点的边,0节点为根的树、A节点为根的树、B节点为根的树的异或值分别为:
一,DFS各子树的异或值,祖先后代关心,时间复杂度O(nn)。
二,枚举两个节点(边),时间复杂度O(nn)。
代码
核心代码
class CNeiBo2 { public: CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase) { m_vNeiB.resize(n); } CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase) { m_vNeiB.resize(n); for (const auto& v : edges) { m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase); if (!bDirect) { m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase); } } } inline void Add(int iNode1, int iNode2) { iNode1 -= m_iBase; iNode2 -= m_iBase; m_vNeiB[iNode1].emplace_back(iNode2); if (!m_bDirect) { m_vNeiB[iNode2].emplace_back(iNode1); } } const int m_iN; const bool m_bDirect; const int m_iBase; vector<vector<int>> m_vNeiB; }; class Solution { public: int minimumScore(vector<int>& nums, vector<vector<int>>& edges) { m_c = nums.size(); CNeiBo2 neiBo(m_c, edges, false); m_vXor.resize(m_c); m_vParent.assign(m_c, vector<bool>(m_c)); vector<int> parent; DFS1(neiBo.m_vNeiB, 0, -1, nums, parent); int iRet = INT_MAX; int v[3]; for (int i = 1; i < m_c; i++) { for (int j = 1; j < m_c; j++) { if (i == j) { continue; } if (m_vParent[i][j]) { v[0]=(m_vXor[0] ^ m_vXor[j]); v[1] = (m_vXor[i]); v[2] = (m_vXor[j] ^ m_vXor[i]); } else if(m_vParent[j][i]) { v[0] = (m_vXor[0] ^ m_vXor[i]); v[1] = (m_vXor[i]^ m_vXor[j]); v[2] = ( m_vXor[j]); } else { v[0] = (m_vXor[0] ^ m_vXor[i] ^ m_vXor[j]); v[1] = (m_vXor[i]); v[2] = (m_vXor[j]); } sort(v, v+3); iRet = min(iRet, v[2] - v[0]); } } return iRet; } int DFS1(vector<vector<int>>& neiBo, int cur, int par, const vector<int>& nums, vector<int>& parent) { int ret = nums[cur]; for (const auto& par1 : parent) { m_vParent[cur][par1] = true; } parent.emplace_back(cur); for (const auto& next : neiBo[cur]) { if (next == par) { continue; } ret ^= DFS1(neiBo, next, cur, nums, parent); } parent.pop_back(); return m_vXor[cur]=ret; } vector<int> m_vXor; vector<vector<bool>> m_vParent; int m_c; };
测试用例
template<class T,class T2> void Assert(const T& t1, const T2& t2) { assert(t1 == t2); } template<class T> void Assert(const vector<T>& v1, const vector<T>& v2) { if (v1.size() != v2.size()) { assert(false); return; } for (int i = 0; i < v1.size(); i++) { Assert(v1[i], v2[i]); } } int main() { vector<int> nums; vector<vector<int>> edges; { Solution sln; nums = { 1,5,5,4,11 }, edges = { {0,1},{1,2},{1,3},{3,4} }; auto res = sln.minimumScore(nums, edges); Assert(9, res); } { Solution sln; nums = { 5,5,2,4,4,2 }, edges = { {0,1},{1,2},{5,2},{4,3},{1,3} }; auto res = sln.minimumScore(nums, edges); Assert(0, res); } }
利用时间戳优化
已处理的节点中,时间戳大于cur的节点 是后代。两个变量分别记录:cur的时间戳,dfs(cur)结束时的时间戳。
2023年4月
class Solution { public: int minimumScore(vector& nums, vector<vector>& edges) { m_c = nums.size(); m_vNeiB.resize(m_c); m_vLeve.resize(m_c); m_vXORSum.resize(m_c); m_vInTime.resize(m_c); m_vOutTime.resize(m_c); m_nums = nums; for (const auto& v : edges) { m_vNeiB[v[0]].emplace_back(v[1]); m_vNeiB[v[1]].emplace_back(v[0]); } dfs(0, -1); int iRet = INT_MAX; std:vector v(3); for (int i = 0; i < edges.size(); i++) { int iChild1 = (m_vLeve[edges[i][0]] > m_vLeve[edges[i][1]]) ? edges[i][0] : edges[i][1]; for (int j = i + 1; j < edges.size(); j++) { int iChild2 = (m_vLeve[edges[j][0]] > m_vLeve[edges[j][1]]) ? edges[j][0] : edges[j][1]; if (IsGrandParent(iChild1, iChild2)) { v[0] = (m_vXORSum[iChild2] ^ m_vXORSum[iChild1]); v[1] = (m_vXORSum[iChild1]); v[2] = (m_vXORSum[0] ^ m_vXORSum[iChild1] ^ m_vXORSum[iChild2] ^ m_vXORSum[iChild1]); } else if (IsGrandParent(iChild2, iChild1)) { v[0] = (m_vXORSum[iChild1] ^ m_vXORSum[iChild2]); v[1] = (m_vXORSum[iChild2]); v[2] = (m_vXORSum[0] ^ m_vXORSum[iChild1] ^ m_vXORSum[iChild2] ^ m_vXORSum[iChild2]); } else { v[0] = (m_vXORSum[iChild1]); v[1] = (m_vXORSum[iChild2]); v[2] = (m_vXORSum[0] ^ m_vXORSum[iChild1] ^ m_vXORSum[iChild2]); } const int iCurRet = *std::max_element(v.begin(), v.end()) - *std::min_element(v.begin(), v.end()); iRet = min(iRet, iCurRet); } } return iRet; } bool IsGrandParent(int iNode1, int iIsGrandParent) { return (m_vInTime[iIsGrandParent] < m_vInTime[iNode1]) && (m_vOutTime[iIsGrandParent] >= m_vOutTime[iNode1]); } void dfs(int iCur, int iParent) { m_vInTime[iCur] = m_iTime++; m_vLeve[iCur] = (-1 == iParent) ? 0 : m_vLeve[iParent]+1 ; int iXorSum = m_nums[iCur]; for (const auto& next : m_vNeiB[iCur]) { if (next == iParent) { continue; } dfs(next, iCur); iXorSum ^= m_vXORSum[next]; } m_vXORSum[iCur] = iXorSum; m_vOutTime[iCur] = m_iTime; } int m_c; vector<vector> m_vNeiB; vector m_vLeve, m_vInTime, m_vOutTime;; vector m_vXORSum; vector m_nums; int m_iTime = 1; };
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。