【数据结构】八大排序之直接插入排序算法

简介: 【数据结构】八大排序之直接插入排序算法

一.直接插入排序简介及思路

直接插入排序(Straight Insertion Sort)是一种简单直观的插入排序算法.

它的基本操作是:

  • 一个数据插入到已经排好的有序表中,从而得到一个新的,数据数增1的有序表.
  • 直到所有的数据插入完为止,得到一个新的有序序列.

在实际生活中,我们玩扑克牌时就使用了插入排序的思想:

算法动图演示如下:


二.直接插入排序的代码实现

算法实现步骤:(以升序为例)

  1. 当表中只有第一个数据的时候它是一定有序的,因此我们第二个元素开始向前面的有序表"插入"数据.
  2. 具体插入方式,使用tmp记录下当前待插入元素,然后tmp从后向前与有序表中的元素逐一比对,如果tmp小于比对元素,则比对元素向后挪动一个位置.
  3. 直到tmp不小于比对元素时,tmp插入到比对元素后面.
  4. 循环将数据向前插入,直到将待排数组的所有数据元素都插入进有序表,排序完成.

清楚了逻辑和概念后,我们的代码实现就比较简单了.代码如下:

//插入排序(升序
void InsertSort(int* a, int n)
{
  for (int i = 1; i < n; i++)
  {
    int end = i - 1;
    int tmp = a[i];
    //将tmp插入到[0,end]这个有序表的区间里
 
    while (end >= 0)
    {
      if (tmp < a[end])  //如果tmp小于比对元素,将比对元素向后挪
      {
        a[end + 1] = a[end];
        end--;
      }
      else       //如果tmp不小于比对元素,将tmp插入到比对元素后面
      {
        break;
      }
    }
    a[end + 1] = tmp;
  }
}

三.直接插入排序的时间复杂度分析

📌最好情况时间复杂度

直接排序的最好情况是每个tmp向前插入时都发现自己恰好不小于前面有序表中的最后一个元素,这时就直接将自己放在自己原本的地方就可以继续向前插入下一个元素了,即数组完全顺序的情况:

易得此时的:

  • 算法执行次数为:
  • 算法时间复杂度为:

📌最坏情况时间复杂度

直接插入的最坏情况是遇到每一个tmp都直到比对到前面有序表的0号位置才插入,即数组完全逆序的情况:

此时算法每趟的交换次数累加起来就是1 + 2 + ...... +(n-2)+(n-1),可以发现当算法执行结束,所有次数累加起来恰好是一个等差数列,我们利用求和公式可得:

  • 算法执行总次数为:
  • 算法时间复杂度为:

四.直接插入排序的优化

我们通过对前面直接插入排序的分析可以发现,当数组整体完全逆序时:

算法的执行总次数为:

算法的执行总次数为:


但是如果我们面对的是前后两部分分别逆序的数组时:

算法的执行总次数为:

算法的执行总次数为:

此时算法的效率就提高了:


如果我们再分为前后四部分逆序的数组时:

算法的执行总次数为:

算法的执行总次数为:

此时算法的效率又提高了:


通过前面的分析,我们可以发现,随着我们分的部分的增加,算法的执行次数在有规律的减少:

分成k部分算法执行总次数有如下关系:

如果我们令k无限大,此时算法的执行次数就可以忽略n^2项,而只剩下1/2n项了

其实k无限大的情况,就是数组被分为只有前后两个元素逆序的情况:

这种情况下,算法的执行总次数:(1+1+......+1+1)

算法的执行总次数:


通过上面的分析,我们可以得到一个结论:

数组元素越接近基本有序,直接插入排序算法的时间复杂度就会越低.

那么我们是不是可以在正式进行插入排序之前数组元素先简单"预排序"一下呢,即在预排序中,我们尽量将大一些的元素放在数组靠后的位置,小一些的元素放在数组靠前的位置,这样再进行直接插入排序就能使效率提高很多.

如果你能够理解这一直接插入排序算法的优化思路,那么恭喜你,你已经理解了希尔排序的思想,接下来我会在另一篇博客中,详细介绍怎样通过这一思路优化直接插入排序算法,最终构造出非常著名的希尔排序算法.

感兴趣的朋友可以直接点击下方文章链接查看希尔排序算法的相关内容:

https://blog.csdn.net/weixin_72357342/article/details/135043566


结语

希望这篇直接插入排序算法详解能对大家有所帮助,欢迎大佬们留言或私信与我交流.

有关更多排序相关知识可以移步:

学海漫浩浩,我亦苦作舟!关注我,大家一起学习,一起进步!


数据结构排序算法篇思维导图:



相关文章
|
21天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
33 1
|
25天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
76 4
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
92 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
22天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
22天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
96 23
|
1月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
59 20
|
21天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
49 1
|
1月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
49 0
|
1月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
94 8
下一篇
DataWorks