【数据结构入门指南】二叉树链式结构的实现(保姆级代码思路解读,非常经典)

简介: 【数据结构入门指南】二叉树链式结构的实现(保姆级代码思路解读,非常经典)

一、前置说明

其他数据结构不同,二叉树的增删查改接口实现的意义不大(后续搜索树的增删查改才有意义)。普通初阶二叉树更重要的是学习控制结构,为后续的AVL树、红黑树等高级数据结构打下基础。同时大部分OJ题也出在此处。


二、二叉树的遍历

所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。

 

按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:

  • 前序遍历(Preorder Traversal 亦称先序遍历)——访问顺序:根节点—>左子树—>右子树
  • 中序遍历(Inorder Traversal)——访问顺序:左子树—>根节点—>右子树
  • 后序遍历(Postorder Traversal)——访问顺序:左子树—>右子树—>根节点

2.1前序遍历

【代码思路】:

  1. 若二叉树为空,则直接返回。
  2. 访问根节点。
  3. 递归遍历左子树,即调用前序遍历函数,传入左子树的根节点。
  4. 递归遍历右子树,即调用前序遍历函数,传入右子树的根节点

代码:

void PrevOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("NULL ");
    return;
  }
  printf("%d ", root->data);
  PrevOrder(root->left);
  PrevOrder(root->right);
}

2.2中序遍历

【代码思路】:

  1. 首先判断二叉树是否为空,若为空则直接返回。
  2. 对当前节点的左子树进行中序遍历,即递归调用中序遍历函数。
  3. 访问当前节点的值。
  4. 对当前节点的右子树进行中序遍历,即递归调用中序遍历函数。

代码:

void InOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("NULL ");
    return;
  }
  InOrder(root->left);
  printf("%d ", root->data);
  InOrder(root->right);
}

2.3 后序遍历

【代码思路】:

  1. 判断当前节点是否为空,若为空则返回。
  2. 递归遍历当前节点的左子树。
  3. 递归遍历当前节点的右子树。
  4. 访问当前节点。

代码:

void PostOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("N ");
    return;
  }
  PostOrder(root->left);
  PostOrder(root->right);
  printf("%d ", root->data);
}

三、以前序遍历为例,递归图解

前序遍历递归图解:



上述三种遍历结果:

  1. 前序遍历结果:1 2 3 4 5 6
  2. 中序遍历结果:3 2 1 5 4 6
  3. 后序遍历结果:3 2 5 6 4 1

四、层序遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

【代码思路】:(核心思想:上一层出时带下一层进队列,即根节点出栈时,根节点的孩子节点入栈)

  1. 首先将根节点入栈。
  2. 循环进行以下操作,直到栈为空。
    。弹出栈顶元素,并将其值输出;
    。如果该节点有右子节点,则将右子节点入栈。
    。 如果该节点有左子节点,则将左子节点入栈

栈相关代码自行查看:栈和队列代码实现

代码:

void LevelOrder(BTNode* root)
{
  Queue q;
  QueueInit(&q);
  if (root)
    QueuePush(&q, root);
  while (!QueueEmpty(&q))
  {
    BTNode* front = QueueFront(&q);
    QueuePop(&q);
    printf("%d ", front->data);
    if(front->left)
      QueuePush(&q, front->left);
    if (front->right)
      QueuePush(&q, front->right);
  }
  printf("\n");
  QueueDestroy(&q);
}

五、节点个数以及高度等

5.1 二叉树节点个数

【代码思路】:

  1. 如果二叉树为空,则节点个数为0。
  2. 否则,节点个数等于根节点的个数加上左子树的节点个数和右子树的节点个数。
  3. 递归计算左子树的节点个数。
  4. 递归计算右子树的节点个数。
  5. 返回根节点个数加上左子树和右子树的节点个数。

代码:

int BinaryTreeSize(BTNode* root)
{
  if (root == NULL)
  {
    return 0;
  }
  return  BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}

5.2二叉树叶子节点个数

【代码思路】:

  1. 判断根节点是否为空,若为空,则返回0。
  2. 判断根节点的左右子树是否为空,若都为空,则表示根节点是叶子节点,返回1。
  3. 通过递归分别计算左子树和右子树的叶子节点个数,并返回左子树和右子树的叶子节点个数之和。

代码:

int BinaryTreeLeafSize(BTNode* root)
{
  if (root == NULL)
  {
    return 0;
  }
  if (root->left == NULL && root->right == NULL)
  {
    return 1;
  }
  return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

5.3 二叉树第k层节点个数

【代码思路】:

  1. 判断二叉树是否为空,如果是则返回0。
  2. 判断k是否等于1,如果是则返回1,表示当前层为第k层,只有一个节点。
  3. 如果以上条件都不满足,则递归计算二叉树的左子树和右子树的第k-1层节点个数,然后将左右子树的第k-1层节点个数相加,即为二叉树第k层节点个数。

代码:

int BinaryTreeLevelKSize(BTNode* root, int k)
{
  assert(k > 0);
  if (root == NULL)
  {
    return 0;
  }
  if (k == 1)
  {
    return 1;
  }
  return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}

5.4 二叉树查找值为x的节点

【代码思路】:

  1. 如果当前节点为空,则返回空。
  2. 如果当前节点的值等于x,则返回当前节点。
  3. 否则,递归查找左子树,如果找到则返回左子树中的节点。
  4. 否则,递归查找右子树,如果找到则返回右子树中的节点。

代码:

BTNode* BTreeFind(BTNode* root, BTDataType x)
{
  if (root == NULL)
    return NULL;
  if (root->data == x)
    return root;
  BTNode* ret1 = BTreeFind(root->left, x);
  if (ret1)
    return ret1;
  BTNode* ret2 = BTreeFind(root->right, x);
  if (ret2)
    return ret2;
  return NULL;
}

5.5 二叉树的高度

【代码思路】:

  1. 如果树为空树,则高度为0。
  2. 如果树不为空树,则高度为左子树的高度和右子树的高度中的较大值加1。
  3. 递归地计算左子树和右子树的高度,并取较大值。
  4. 返回左子树和右子树高度的较大值加1。

代码:

int BinaryTreeHeight(BTNode* root)
{
  if (root == NULL)
  {
    return 0;
  }
  int LeftHeight = BinaryTreeHeight(root->left);
  int RightHeight = BinaryTreeHeight(root->right);
  return LeftHeight > RightHeight ? LeftHeight + 1 : RightHeight + 1;
}

六、二叉树的创建和销毁

6.1 构建二叉树

Tips: 构建二叉树的方式有很多, 这里我们通过前序遍组"ABD##E#H##CF##G##"构建二叉树。(‘#’表示空树

【代码思路】:

  1. 如果节点为“#”表示空,返回空。
  2. 遍历创建左子树,并和根节点链接。
  3. 遍历创建右子树,并和根节点链接。
  4. 返回根节点

代码:

typedef int BTDataType;
typedef struct BinaryTreeNode//结构体类型
{
    BTDataType data;
    struct BinaryTreeNode* left;
    struct BinaryTreeNode* right;
}BTNode;
//创建节点
BTNode* BuyNode(BTDataType x)
{
    BTNode* Node = (BTNode*)malloc(sizeof(BTNode));
    if (Node == NULL)
    {
        perror("malloc fail");
        exit(-1);
    }
    Node->data = x;
    Node->left = NULL;
    Node->right = NULL;
    return Node;
}
//先序创建二叉树
BTNode* createrroot(char* a, int* pi)
{
    if (a[*pi] == '#')
    {
        (*pi)++;
        return NULL;
    }
    BTNode* root = BuyNode(a[*pi]);
    (*pi)++;
    root->left = createrroot(a, pi);
    root->right = createrroot(a, pi);
    return root;
}

6.2 二叉树的销毁

【代码思路】:

  1. 从根节点开始,递归地销毁左子树。
  2. 从根节点开始,递归地销毁右子树。
  3. 将根节点从内存中删除。

代码:

void BinaryTreeDestroy(BTNode* root)
{
  if (root == NULL)
    return;
  BinaryTreeDestory(root->left);
  BinaryTreeDestory(root->right);
  free(root);
}

6.3 判断二叉树是否为完全二叉树

(博主数据结构初阶是用C语言来实现的,所以此处直接栈代码从博主代码仓库中拷贝过来的,读者可以用其他语言来实现,大同小异)

【代码思路】:

  1. 遍历二叉树,使用层次遍历的方式,从根节点开始,逐层遍历每个节点。
  2. 当遇到第一颗空树时停止遍历。
  3. 从第一颗空树开始,后续节点如果有非空就不是完全二叉树,否则为完全二叉树。

栈相关代码自行查看:栈和队列代码实现

代码:

int BinaryTreeComplete(BTNode* root)
{
    Que q;
    QueueInit(&q);
    if (root)
        QueuePush(&q, root);
    while (!QueueEmpty(&q))
    {
        BTNode* front = QueueFront(&q);
        QueuePop(&q);
        //遇空就跳过
        if (front==NULL)
        {
            break;
        }
        QueuePush(&q, root->left);
        QueuePush(&q, root->right);
    }
    //检查后续节点是否有非空
    //有非空就不是完全二叉树
    while (!QueueEmpty(&q))
    {
        BTNode* front = QueueFront(&q);
        QueuePop(&q);
        if (front)
        {
            QueueDestroy(&q);
            return false;
        }
    }
    QueueDestroy(&q);
    return true;
}


相关文章
|
18天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
60 16
|
18天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
66 8
|
27天前
|
存储 Java 开发者
Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效
【10月更文挑战第19天】在软件开发中,随着项目复杂度的增加,数据结构的组织和管理变得至关重要。Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,帮助开发者告别混乱,提升代码质量。
27 1
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
22 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
25 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
1月前
|
存储 算法 索引
HashMap底层数据结构及其增put删remove查get方法的代码实现原理
HashMap 是基于数组 + 链表 + 红黑树实现的高效键值对存储结构。默认初始容量为16,负载因子为0.75。当存储元素超过容量 * 负载因子时,会进行扩容。HashMap 使用哈希算法计算键的索引位置,通过链表或红黑树解决哈希冲突,确保高效存取。插入、获取和删除操作的时间复杂度接近 O(1)。
29 0
|
1月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆
|
1月前
探索顺序结构:栈的实现方式
探索顺序结构:栈的实现方式
|
1月前
|
存储 机器学习/深度学习 算法
探索数据结构:入门及复杂度的解锁
探索数据结构:入门及复杂度的解锁
|
18天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
95 9

热门文章

最新文章

下一篇
无影云桌面