7 JUC 三大辅助类
JUC 中提供了三种常用的辅助类,通过这些辅助类可以很好的解决线程数量过
多时 Lock 锁的频繁操作。这三种辅助类为:
- • CountDownLatch: 减少计数
- • CyclicBarrier: 循环栅栏
- • Semaphore: 信号灯
下面我们分别进行详细的介绍和学习
7.1 减少计数 CountDownLatch
CountDownLatch 类可以设置一个计数器,然后通过 countDown 方法来进行
减 1 的操作,使用 await 方法等待计数器不大于 0,然后继续执行 await 方法
之后的语句。
• CountDownLatch 主要有两个方法,当一个或多个线程调用 await 方法时,这
些线程会阻塞
• 其它线程调用 countDown 方法会将计数器减 1(调用 countDown 方法的线程
不会阻塞)
• 当计数器的值变为 0 时,因 await 方法阻塞的线程会被唤醒,继续执行
场景: 6 个同学陆续离开教室后值班同学才可以关门。
CountDownLatchDemopackage com.at
package com.xingchen.juc; import java.util.concurrent.CountDownLatch; //演示 CountDownLatch /** * @author xing'chen */ public class CountDownLatchDemo { //6个同学陆续离开教室之后,班长锁门 public static void main(String[] args) throws InterruptedException { //创建CountDownLatch对象,设置初始值 CountDownLatch countDownLatch = new CountDownLatch(6); //6个同学陆续离开教室之后 for (int i = 1; i <=6; i++) { new Thread(()->{ System.out.println(Thread.currentThread().getName()+" 号同学离开了教室"); //计数 -1 countDownLatch.countDown(); },String.valueOf(i)).start(); } //等待 countDownLatch.await(); System.out.println(Thread.currentThread().getName()+" 班长锁门走人了"); } }
7.2 循环栅栏 CyclicBarrier
CyclicBarrier 看英文单词可以看出大概就是循环阻塞的意思,在使用中
CyclicBarrier 的构造方法第一个参数是目标障碍数,每次执行 CyclicBarrier 一
次障碍数会加一,如果达到了目标障碍数,才会执行 cyclicBarrier.await()之后
的语句。可以将 CyclicBarrier 理解为加 1 操作
场景: 集齐 7 颗龙珠就可以召唤神龙
CyclicBarrierDemo
package com.xingchen.juc; import java.util.concurrent.CyclicBarrier; //集齐7颗龙珠就可以召唤神龙 /** * @author xing'chen */ public class CyclicBarrierDemo { //创建固定值 private static final int NUMBER = 7; public static void main(String[] args) { //创建CyclicBarrier CyclicBarrier cyclicBarrier = new CyclicBarrier(NUMBER,()->{ System.out.println("*****集齐7颗龙珠就可以召唤神龙"); }); //集齐七颗龙珠过程 for (int i = 1; i <=7; i++) { new Thread(()->{ try { System.out.println(Thread.currentThread().getName()+" 星龙被收集到了"); //等待 cyclicBarrier.await(); } catch (Exception e) { e.printStackTrace(); } },String.valueOf(i)).start(); } } }
7.3 信号灯 Semaphore
Semaphore 的构造方法中传入的第一个参数是最大信号量(可以看成最大线
程池),每个信号量初始化为一个最多只能分发一个许可证。使用 acquire 方
法获得许可证,release 方法释放许可
场景: 抢车位, 6 部汽车 3 个停车位
SemaphoreDemo
package com.xingchen.juc; import java.util.Random; import java.util.concurrent.Semaphore; import java.util.concurrent.TimeUnit; /** * @author xing'chen */ //6辆汽车,停3个车位 public class SemaphoreDemo { public static void main(String[] args) { //创建Semaphore,设置许可数量 Semaphore semaphore = new Semaphore(3); //模拟6辆汽车 for (int i = 1; i <=6; i++) { new Thread(()->{ try { //抢占 semaphore.acquire(); System.out.println(Thread.currentThread().getName()+" 抢到了车位"); //设置随机停车时间 TimeUnit.SECONDS.sleep(new Random().nextInt(5)); System.out.println(Thread.currentThread().getName()+" ------离开了车位"); } catch (InterruptedException e) { e.printStackTrace(); } finally { //释放 semaphore.release(); } },String.valueOf(i)).start(); } } }
8 读写锁
8.1 读写锁介绍
现实中有这样一种场景:对共享资源有读和写的操作,且写操作没有读操作那
么频繁。在没有写操作的时候,多个线程同时读一个资源没有任何问题,所以
应该允许多个线程同时读取共享资源;但是如果一个线程想去写这些共享资源,
就不应该允许其他线程对该资源进行读和写的操作了。
针对这种场景,JAVA 的并发包提供了读写锁 ReentrantReadWriteLock,
它表示两个锁,一个是读操作相关的锁,称为共享锁;一个是写相关的锁,称
为排他锁
1. 线程进入读锁的前提条件:
• 没有其他线程的写锁
• 没有写请求, 或者有写请求,但调用线程和持有锁的线程是同一个(可重入锁)。
2. 线程进入写锁的前提条件:
• 没有其他线程的读锁
• 没有其他线程的写锁
而读写锁有以下三个重要的特性:
(1)公平选择性:支持非公平(默认)和公平的锁获取方式,吞吐量还是非公
平优于公平。
(2)重进入:读锁和写锁都支持线程重进入。
(3)锁降级:遵循获取写锁、获取读锁再释放写锁的次序,写锁能够降级成为
读锁。
8.2 ReentrantReadWriteLock
ReentrantReadWriteLock 类的整体结构
public class ReentrantReadWriteLock implements ReadWriteLock, java.io.Serializable { /** 读锁 */ private final ReentrantReadWriteLock.ReadLock readerLock; /** 写锁 */ private final ReentrantReadWriteLock.WriteLock writerLock; final Sync sync; /** 使用默认(非公平)的排序属性创建一个新的 ReentrantReadWriteLock */ public ReentrantReadWriteLock() { this(false); } /** 使用给定的公平策略创建一个新的 ReentrantReadWriteLock */ public ReentrantReadWriteLock(boolean fair) { sync = fair ? new FairSync() : new NonfairSync(); readerLock = new ReadLock(this); writerLock = new WriteLock(this); } /** 返回用于写入操作的锁 */ public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; } /** 返回用于读取操作的锁 */ public ReentrantReadWriteLock.ReadLock readLock() { return readerLock; } abstract static class Sync extends AbstractQueuedSynchronizer {} static final class NonfairSync extends Sync {} static final class FairSync extends Sync {} public static class ReadLock implements Lock, java.io.Serializable {} public static class WriteLock implements Lock, java.io.Serializable {} }
可以看到,ReentrantReadWriteLock 实现了 ReadWriteLock 接口,
ReadWriteLock 接口定义了获取读锁和写锁的规范,具体需要实现类去实现;
同时其还实现了 Serializable 接口,表示可以进行序列化,在源代码中可以看
到 ReentrantReadWriteLock 实现了自己的序列化逻辑。
8.3 入门案例
场景: 使用 ReentrantReadWriteLock 对一个 hashmap 进行读和写操作
8.3.1 实现案例
package com.xingchen.readwrite; import java.util.HashMap; import java.util.Map; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.ReadWriteLock; import java.util.concurrent.locks.ReentrantReadWriteLock; //资源类 class MyCache { //创建map集合 private volatile Map<String,Object> map = new HashMap<>(); //创建读写锁对象 private ReadWriteLock rwLock = new ReentrantReadWriteLock(); //放数据 public void put(String key,Object value) { //添加写锁 rwLock.writeLock().lock(); try { System.out.println(Thread.currentThread().getName()+" 正在写操作"+key); //暂停一会 TimeUnit.MICROSECONDS.sleep(300); //放数据 map.put(key,value); System.out.println(Thread.currentThread().getName()+" 写完了"+key); } catch (InterruptedException e) { e.printStackTrace(); } finally { //释放写锁 rwLock.writeLock().unlock(); } } //取数据 public Object get(String key) { //添加读锁 rwLock.readLock().lock(); Object result = null; try { System.out.println(Thread.currentThread().getName()+" 正在读取操作"+key); //暂停一会 TimeUnit.MICROSECONDS.sleep(300); result = map.get(key); System.out.println(Thread.currentThread().getName()+" 取完了"+key); } catch (InterruptedException e) { e.printStackTrace(); } finally { //释放读锁 rwLock.readLock().unlock(); } return result; } } /** * @author xing'chen */ public class ReadWriteLockDemo { public static void main(String[] args) throws InterruptedException { MyCache myCache = new MyCache(); //创建线程放数据 for (int i = 1; i <=5; i++) { final int num = i; new Thread(()->{ myCache.put(num+"",num+""); },String.valueOf(i)).start(); } TimeUnit.MICROSECONDS.sleep(300); //创建线程取数据 for (int i = 1; i <=5; i++) { final int num = i; new Thread(()->{ myCache.get(num+""); },String.valueOf(i)).start(); } } }
8.4 小结(重要)
• 在线程持有读锁的情况下,该线程不能取得写锁(因为获取写锁的时候,如果发
现当前的读锁被占用,就马上获取失败,不管读锁是不是被当前线程持有)。
• 在线程持有写锁的情况下,该线程可以继续获取读锁(获取读锁时如果发现写
锁被占用,只有写锁没有被当前线程占用的情况才会获取失败)。
原因: 当线程获取读锁的时候,可能有其他线程同时也在持有读锁,因此不能把
获取读锁的线程“升级”为写锁;而对于获得写锁的线程,它一定独占了读写
锁,因此可以继续让它获取读锁,当它同时获取了写锁和读锁后,还可以先释
放写锁继续持有读锁,这样一个写锁就“降级”为了读锁。