如今,社交媒体和大数据之间是如此相互关联,以至于几乎已成为某些圈子的同义词。事实是,大多数专家认为,如今全球90%以上的数据是在过去几年中创建的,其中很大一部分与社交媒体有关。
在这信息的海洋中,超过80%的信息来自非结构化格式,这种格式可能以某种方式与社交媒体联系在一起。由于大数据处理不能以传统方式将大量数据进行排序和分析,因此这种方法已被应用于尝试和了解所有的信息,这是很自然的。
随着从大数据分析获得的知识,营销人员和业务分析师可以更深入地了解他们的目标受众的行为和预期。事实上,大数据和社交媒体之间的关系现在非常强大,在谈论社交媒体营销时,几乎不可能不考虑大数据的某些方面。
现代社交媒体分析背后的关键因素
数字营销人员如今可以说的一件事是,他们肯定不缺乏数据。然而出现的问题是,哪些部分的数据具有重要的价值,以及如何理解它?
一项研究表明在全球互联网活动的一分钟内,有:
·701,389个用户在Facebook上登录
·发送了1.5亿封电子邮件
·在Snapchat上共享527,760张照片
·在Twitter上发布347222条推文
·在Instagram上发布28194个新帖子
·在vine循环播放视频104万次
·在Google上搜索查询240万次
·在YouTube上视频观看次数为278万次
·在WhatsApp上发布2080万条消息
而报告中的这些信息来自一年前,所以不难想象这些令人难以置信的数字如今变得更大。那么营销人员如何利用每秒收集的惊人的数据量?
简单地说,对于行业巨头来说,监控企业的社交账户并分析每个帖子是没有用的,但是他们需要以某种方式从这些大量数据中收集他们的受众的趋势和总体感觉。
毕竟,大数据只是来自各种来源各种格式的数据集合,能够以适当的方式进行处理和分析。关键的问题是如何将这些可以关联和格式化的数据进行有意义的分析。
当涉及视觉和音频数据时,一个很大的帮助是人工神经网络和人工智能,最终让人们实现这个过程。当然,这些技术的使用是严格限制的,目前保留给规模最大的公司,但可以肯定的是,他们在不久的将来提供给更为广泛的用户。
即使如此,一些广告公司或企业可以从谷歌和Facebook等信息巨头收集的信息中获得信息。用户可以使用Google的信息资源,还有第三方产品可以帮助用户进行大数据分析。
大多数时候,营销人员认为信息收集是一个被动的过程,事实上并非如此。任何有意义的数据分析的最好方法是进行主动实验,并具有清晰的衡量指标。
Facebook的广告策略
在过去的几年里,大数据在市场营销中的故事也许更好地说明它是如何改变Facebook广告生态系统的。如果你了解Facebook公司是规模最大的数据供应商之一,那么这并不令人惊讶,而且其成功有一部分归功于这一点。
在过去13年里,Facebook公司收集了大量的用户信息。虽然它不能直接销售这些数据,但它可以将自己研究的结果卖给第三方,只要它是匿名的。更重要的是,在这种情况下,Facebook公司自己的广告平台允许营销人员通过间接利用大数据分析来最大程度地发挥其广告效果。
当用户通过Facebook创建广告活动时,系统会显示多个选项。可以创建自定义受众群体,这些受众群体可以通过Facebook调用的类似受众群体的内容进一步扩展。
此外,用户还会看到一个分层目标选项,其中包含大量过滤器,以便尽可能使其受众群体更具体。
如果没有Facebook公司在数据处理的幕后所做的这些工作,这一切都不可能实现,而这些做法可能会受到隐私保护立场的争议,但却没有人争论这项工作对于科学和商业来说有多重要。
当然,这并不意味着营销主要依赖于大数据,而且用户设置其Facebook广告活动仍然需要加入Facebook其他广告做法,如果用户有任何关联或数字营销措施的话。
总之,大数据完全改变了数字营销的景观,但不能说大数据取代了传统的营销方式。它只是一个工具,虽然它很强大。
即使用户认为大数据对其并不重要,也不能真正地避开它,尤其是用户在处理社交媒体营销时,因为这二者是如此重叠,现在不可能清楚地进行区分。
最后,如果用户了解大数据分析的好处,并清楚如何在营销策略中实施,这将为超越其竞争对手提供优势。而在不久的将来,这将成为一个简单的问题。
本文转自d1net(转载)