快速上手App自动化测试利器,Toast原理解析及操作实例

简介: `Toast`是Android中的轻量级通知,短暂显示在屏幕任意位置,1-2秒后自动消失,不获取焦点且不可点击。Appium通过uiautomator2在控件树中处理Toast。在测试中,可设置隐式等待,利用XPath或Accessibility ID定位Toast元素进行检测和验证。示例代码展示了如何初始化driver,点击触发Toast,以及如何定位并读取Toast文本。

简介

Toast 是一种轻量级的消息提示,常常以小弹框的形式出现,一般出现 1 到 2 秒会自动消失,可以出现在屏幕上中下任意位置。

Toast具有如下的特点:

  • 无法被点击,不同于 Dialog,永远不会获得焦点。
  • Toast 显示的时间有限,Toast 会根据用户设置的显示时间后自动消失
  • 是系统级别的控件,属于系统 settings

Toast 的思想:尽可能不引人注意,同时还向用户显示信息,希望用户看到。

如下图,就是一种 Toast 消息框类型:

image.png

Toast 定位

Appium 在抓取 Toast 时,使用的是 uiautomator 底层,然后将 Toast 元素放入控件树中。需要注意的是,Toast 本身并不属于常规的用户界面控件,而是一种短暂的消息提示,在这个过程中,Appium 使用的是 uiautomator2。

Toast 出现的时间一般比较短,可以通过等待或者打印页面元素的方式判断是否存在,并且通过 Xapth 或者 Accessibility ID 的定位方式找到 Toast 元素。在页面结构中,Toast 元素大致如下所示:

<!-- 在这里可以看到Toast消息提示框的class是android.widget.Toast,且一个页面一般只有一个 -->
<android.widget.Toast index="1" package="com.android.settings" class="android.widget.Toast" text="Clicked popup menu item Search" displayed="true" />
  1. 配置 driver 的初始化和关闭 driver 的步骤。
class TestToast:

  def setup_class(self):
      caps = {
   
   
          'platformName': 'android',
          'appium:appPackage': 'io.appium.android.apis',
          'appium:appActivity': 'io.appium.android.apis.view.PopupMenu1',
          "appium:noReset": True,
          "appium:shouldTerminateApp": True
      }
      self.driver = webdriver.Remote("http://127.0.0.1:4723", options=UiAutomator2Options().load_capabilities(caps))
      self.driver.implicitly_wait(15)

  def teardown_class(self):
      self.driver.quit()
  1. 定位 toast 消息提示框

def test_get_toast(self):
      # 定位到 Make a Popup! 按钮并点击
      self.driver.find_element(AppiumBy.ACCESSIBILITY_ID, "Make a Popup!").click()
      # 消息框类型选择search
      self.driver.find_element(AppiumBy.XPATH, "//*[@text='Search']").click()
      # 获取 Toast 弹框文本信息
      result = self.driver.find_element(AppiumBy.XPATH, "//*[contains(@text, 'Clicked popup')]").text
      assert result == "Clicked popup menu item Search"

总结

Toast 消息提示框是一个出现时间短并且无法被点击,一般可以用 Xpath 或者 Accessibility ID 的方式去定位。

相关文章
|
11月前
|
安全 算法 网络协议
解析:HTTPS通过SSL/TLS证书加密的原理与逻辑
HTTPS通过SSL/TLS证书加密,结合对称与非对称加密及数字证书验证实现安全通信。首先,服务器发送含公钥的数字证书,客户端验证其合法性后生成随机数并用公钥加密发送给服务器,双方据此生成相同的对称密钥。后续通信使用对称加密确保高效性和安全性。同时,数字证书验证服务器身份,防止中间人攻击;哈希算法和数字签名确保数据完整性,防止篡改。整个流程保障了身份认证、数据加密和完整性保护。
|
存储 缓存 算法
HashMap深度解析:从原理到实战
HashMap,作为Java集合框架中的一个核心组件,以其高效的键值对存储和检索机制,在软件开发中扮演着举足轻重的角色。作为一名资深的AI工程师,深入理解HashMap的原理、历史、业务场景以及实战应用,对于提升数据处理和算法实现的效率至关重要。本文将通过手绘结构图、流程图,结合Java代码示例,全方位解析HashMap,帮助读者从理论到实践全面掌握这一关键技术。
416 14
|
10月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
714 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
11月前
|
机器学习/深度学习 算法 数据挖掘
解析静态代理IP改善游戏体验的原理
静态代理IP通过提高网络稳定性和降低延迟,优化游戏体验。具体表现在加快游戏网络速度、实时玩家数据分析、优化游戏设计、简化更新流程、维护网络稳定性、提高连接可靠性、支持地区特性及提升访问速度等方面,确保更流畅、高效的游戏体验。
277 22
解析静态代理IP改善游戏体验的原理
|
10月前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
1321 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
11月前
|
编解码 缓存 Prometheus
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
本期内容为「ximagine」频道《显示器测试流程》的规范及标准,我们主要使用Calman、DisplayCAL、i1Profiler等软件及CA410、Spyder X、i1Pro 2等设备,是我们目前制作内容数据的重要来源,我们深知所做的仍是比较表面的活儿,和工程师、科研人员相比有着不小的差距,测试并不复杂,但是相当繁琐,收集整理测试无不花费大量时间精力,内容不完善或者有错误的地方,希望大佬指出我们好改进!
788 16
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
|
10月前
|
传感器 人工智能 监控
反向寻车系统怎么做?基本原理与系统组成解析
本文通过反向寻车系统的核心组成部分与技术分析,阐述反向寻车系统的工作原理,适用于适用于商场停车场、医院停车场及火车站停车场等。如需获取智慧停车场反向寻车技术方案前往文章最下方获取,如有项目合作及技术交流欢迎私信作者。
848 2
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
13039 46
|
11月前
|
Java 数据库 开发者
详细介绍SpringBoot启动流程及配置类解析原理
通过对 Spring Boot 启动流程及配置类解析原理的深入分析,我们可以看到 Spring Boot 在启动时的灵活性和可扩展性。理解这些机制不仅有助于开发者更好地使用 Spring Boot 进行应用开发,还能够在面对问题时,迅速定位和解决问题。希望本文能为您在 Spring Boot 开发过程中提供有效的指导和帮助。
1410 12
|
11月前
|
开发框架 监控 JavaScript
解锁鸿蒙装饰器:应用、原理与优势全解析
ArkTS提供了多维度的状态管理机制。在UI开发框架中,与UI相关联的数据可以在组件内使用,也可以在不同组件层级间传递,比如父子组件之间、爷孙组件之间,还可以在应用全局范围内传递或跨设备传递。
367 2

热门文章

最新文章

推荐镜像

更多
  • DNS