一文搞懂 Transformer 工作原理 !!

简介: 一文搞懂 Transformer 工作原理 !!

前言

本文将从单头Attention工作原理多头Attention工作原理全连接网络工作原理三个方面,实现一文搞懂Transformer的工作原理

Transformer工作原理


一、单头Attention工作原理

单头Attention(Single-Head Attention):单头注意力是一种注意力机制,它只求一次注意力。在这个过程中,对同样的查询(Q)、键(K)和值(V)求一次注意力,得到一个输出。这种机制允许模型从不同的表示子空间在不同位置关注信息。

Scaled Dot-Product(缩放点积运算)

  • Query、Key和Value矩阵:

Query矩阵(Q):表示当前的关注点或信息需求,用于与Key矩阵进行匹配。

Key矩阵(K):包含输入序列中各个位置的标识信息,用于被Query矩阵查询匹配。

Value矩阵(V):存储了与Key矩阵相对应的实际值或信息内容,当Query与某个Key匹配时,相应的Value将被用来计算输出。

  • 点积计算:

       通过计算Query矩阵和Key矩阵之间的点积(即对应元素相乘后求和),来衡量Query与每个Key之间的相似度或匹配程度。

  • 缩放因子:

       由于点积操作的结果可能非常大,尤其是在输入维度较高的情况下,这可能导致softmax函数在计算注意力权重时进入饱和区。为了避免这个问题,缩放点积注意力引入了一个缩放因子,通常是输入维度的平方根。点积结果除以这个缩放因子,可以使得softmax函数的输入保持在一个合理的范围内。

  • Softmax函数:

       将缩放后的点积结果输入到softmax函数中,计算每个Key相对于Query的注意力权重。Softmax函数将原始得分转换为概率分布,使得所有Key的注意力权重之和为2。

工作原理:单头Attention通过计算每个token的查询向量与所有token的键向量的点积,并经过softmax归一化得到注意力权重,再将这些权重应用于值向量进行加权求和,从而生成每个token的自注意力输出表示。

  • 每个token对应的Query向量与每个token对应的Key向量做点积

       对于输入序列中的每个token,我们都有一个对应的查询向量(Query Vector,Q)和键向量(Key Vector,K)。

       我们计算每个查询向量与所有键向量的点积。

       这个步骤是在所有token之间建立关系,表示每个token对其他token的“关注”程度。

QK向量点积运算

  • 将上述点积取softmax(得到0~1之间的值,即为Attention权重)

点积的结果需要经过一个softmax函数,确保所有token的注意力权重之和为1。softmax函数将点积结果转换为0到1之间的值,这些值表示了每个token相对于其他所有token的注意力权重。

计算Attention权重

  • 计算每个token相对于所有其他token的Attention权重(最终构成一个Attention矩阵)

经过softmax处理后的注意力权重构成了一个Attention矩阵。

这个矩阵的每一行对应一个token,每一列也对应一个token,矩阵中的每个元素表示了对应行token对列token的注意力权重。

构成Attention矩阵

  • 每个token对应的value向量乘以Attention权重,并相加,得到当前token的Self-Attention value向量

使用这个Attention矩阵来加权输入序列中的值向量(Value Vector,V)。

具体来说,对于每个token,我们将其对应的值向量与Attention矩阵中该token所在行的所有权重相乘,并将结果相加。

这个加权求和的结果就是该token经过自注意力机制处理后的输出表示。

加权求和Value向量

  • 将上述操作应用于每个token

上述操作会应用于输入序列中的每个token,从而得到每个token经过自注意力机制处理后的输出表示。

这些输出表示通常会被送到模型的下一个层进行进一步的处理。

应用于每个token

二、多头Attention工作原理

多头Attention(Multi-Head Attention):多头注意力机制通过并行运行多个Self-Attention层并综合其结果,能够同时捕捉输入序列在不同子空间中的信息,从而增强模型的表达能力。

  • Multi-Head Attention实际上是多个并行的Self-Attention层,每个“头”都独立地学习不同的注意力权重。
  • 这些“头”的输出随后被合并(通常是拼接后再通过一个线性层),以产生最终的输出表示。
  • 通过这种方式,Multi-Head Attention能够同时关注来自输入序列的不同子空间的信息。

Multi-Head Attention

工作原理:多头Attention将每个头得到向量拼接在一起,最后乘一个线性矩阵,得到Multi-Head Attention的输出。

  • 输入线性变换:对于输入的Query(查询)、Key(键)和Value(值)向量,首先通过线性变换将它们映射到不同的子空间。这些线性变换的参数是模型需要学习的。
  • 分割多头:经过线性变换后,Query、Key和Value向量被分割成多个头。每个头都会独立地进行注意力计算。
  • 缩放点积注意力:在每个头内部,使用缩放点积注意力来计算Query和Key之间的注意力分数。这个分数决定了在生成输出时,模型应该关注Value向量的部分。
  • 注意力权重应用:将计算出的注意力权重应用于Value向量,得到加权的中间输出。这个过程可以理解为根据注意力权重对输入信息进行筛选和聚焦。
  • 拼接和线性变换:将所有头的加权输出拼接在一起,然后通过一个线性变换得到最终的Multi-Head Attention输出。

拼接和线性变换

三、全连接网络工作原理

前馈网络(Feed-Forward Network):Transformer模型中,前馈网络用于将输入的词向量映射到输出的词向量,以提取更丰富的语义信息。前馈网络通常包括几个线性变换和非线性激活函数,以及一个残差连接和一个层归一化操作。

  • Encoder编码器:

Transformer中的编码器部分一共N个相同的编码器层组成。

每个编码器层都有两个子层,即多头注意力层(Multi-Head Attention)层和前馈神经网络(Feed-Forward Network)。

在每个子层后面都有残差连接(图中的虚线)和层归一化(LayerNorm)操作,二者合起来称为Add&Norm操作。

Encoder(编码器)架构

  • Decoder解码器:

Transformer中的解码器部分同样一共N个相同的解码器层组成。

每个解码器层都有三个子层,掩蔽自注意力层(Masked Self-Attention)、Encoder-Decoder注意力层、前馈神经网络(Feed-Forward Network)。

同样,在每个子层后面都有残差连接(图中的虚线)和层归一化(LayerNorm)操作,二者合起来称为Add&Norm操作。

Decoder(解码器)结构

工作原理:Multi-Head Attention的输出,经过残差和norm之后进入一个两层全连接网络。

全连接网络

参考:架构师带你玩转AI

目录
相关文章
|
7月前
|
存储 消息中间件 监控
一文搞懂常见的网络I/O模型
一文搞懂常见的网络I/O模型
136 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
Transformer图解以及相关的概念
【10月更文挑战第5天】transformer是目前NLP甚至是整个深度学习领域不能不提到的框架,同时大部分LLM也是使用其进行训练生成模型,所以transformer几乎是目前每一个机器人开发者或者人工智能开发者不能越过的一个框架。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
Transformer图解以及相关的概念解析
前言 transformer是目前NLP甚至是整个深度学习领域不能不提到的框架,同时大部分LLM也是使用其进行训练生成模型,所以transformer几乎是目前每一个机器人开发者或者人工智能开发者不能越过的一个框架。接下来本文将从顶层往下去一步步掀开transformer的面纱。 transformer概述 Transformer模型来自论文Attention Is All You Need。 在论文中最初是为了提高机器翻译的效率,它使用了Self-Attention机制和Position Encoding去替代RNN。后来大家发现Self-Attention的效果很好,并且在其它的地
|
4月前
八问八答搞懂Transformer内部运作原理
【8月更文挑战第28天】这篇名为“Transformer Layers as Painters”的论文通过一系列实验,深入探讨了Transformer模型内部不同层级的信息处理机制。研究发现,中间层级在表示空间上具有一致性,但功能各异,且模型对层级的去除或重排表现出较强的鲁棒性。此外,论文还分析了层级顺序、并行执行及循环等因素对模型性能的影响,揭示了不同任务下层级顺序的重要性差异,并指出随机化层级顺序和循环并行化对性能损害最小。
53 5
|
4月前
|
机器学习/深度学习 API 计算机视觉
4.2 图像分类基本概念和ResNet设计思想
这篇文章介绍了图像分类的基本概念,详细阐述了ResNet(残差网络)的设计思想和实现方法,包括残差单元的结构设计、整体网络结构以及如何使用飞桨框架的高层API快速构建和训练图像分类模型。
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
神经网络基本概念以及Pytorch实现,多线程编程面试题
神经网络基本概念以及Pytorch实现,多线程编程面试题
|
7月前
|
机器学习/深度学习 自然语言处理 并行计算
一文搞懂Transformer架构的三种注意力机制
一文搞懂Transformer架构的三种注意力机制
706 1
|
7月前
|
机器学习/深度学习 并行计算 算法
Transformer 一起动手编码学原理
学习Transformer,快来跟着作者动手写一个。
94350 9
|
7月前
|
前端开发
iStack详解(一)——iStack基本原理
iStack详解(一)——iStack基本原理
341 4
|
7月前
|
运维 监控 NoSQL
RedisShake的基本原理
RedisShake的基本原理
434 0