flink cdc 同步问题之如何同步多张库表

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。

问题一:flink cdc 如果要同步多张库表,是怎么做的 ?


flink cdc 如果要同步多张库表,是怎么做的 ?


参考回答:

在 Apache Flink CDC 中同步多张数据库表时,你可以采取以下两种主要方法:

方法一:多个独立的Flink作业(Job)

单表单任务:每个Flink作业仅负责一个数据库表的CDC数据同步。这种方式清晰明了,易于管理和调试,每张表的源连接器配置、转换逻辑以及目标sink都可以独立定制和优化。示例:

创建多个Flink CDC作业,每个作业使用Debezium或者其他CDC工具作为数据源,从特定的数据库表中抽取变更数据。

分别配置Sink端,可能是另一个数据库、消息队列或者其他目标系统。

方法二:单一Flink作业内处理多张表

多表单任务(批量同步模式):在Flink 1.14及以上版本中,通过Flink SQL DDL可以实现一个作业同步多个表的功能。不过需要注意的是,Flink CDC原生的DataStream API中一个job无法直接同时处理多个表的CDC,但在SQL API中可以构建一个包含多个CREATE TABLE语句的DAG,每个表都是一个单独的CDC source。示例:

使用Flink SQL创建多个表定义,每个定义中包含相应的CDC连接器配置。

可能需要在下游处理中合并来自不同表的变更流,或者分别处理后再输出到不同的目标。

CREATE TABLE table1 (
    ...
) WITH (
    'connector' = 'debezium-postgres',
    '...' -- table1的配置
);
CREATE TABLE table2 (
    ...
) WITH (
    'connector' = 'debezium-mysql',
    '...' -- table2的配置
);
-- 对于table1和table2的同步操作
INSERT INTO sink_table1 SELECT ... FROM table1;
INSERT INTO sink_table2 SELECT ... FROM table2;

多表单任务(复杂拓扑结构):
在更复杂的场景下,可以通过编写自定义的Flink程序来整合多个表的CDC流,并根据业务逻辑进行联合处理。不过这种情况下通常需要开发者自行设计和实现状态管理、冲突解决等相关逻辑。

总之,在决定使用哪种方案时,需要考虑的因素包括但不限于:

表之间的依赖关系和耦合程度

数据一致性要求

同步延迟和性能要求

系统资源的限制

作业管理和运维的复杂度

根据你的具体需求来选择最适合的方法。对于大部分情况,尤其是表间关系相对独立的场景,第一种方法更为常见和推荐。而对于需要高度集成和协调处理多表变更的场景,第二种方法可能更适合。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/595019?spm=a2c6h.13066369.question.46.283f3f33q1SX8R


问题二:Flink CDC里PostgreSQLSource 被标记为弃用状态,建议换哪个?

Flink CDC里PostgreSQLSource 被标记为弃用状态,PostgresSourceBuilder是 @Experimental状态 现在建议用哪个?


参考回答:

PostgreSQLSource被标记为弃用并不意味着完全不能使用,但在某些版本中,社区推荐转向更现代的API或者替代组件。

对于PostgreSQL的CDC源,最新的推荐做法是使用Flink CDC项目提供的连接器,而不是直接使用内置的PostgreSQLSource。Flink CDC项目已经发展出了与PostgreSQL良好集成的组件,通常通过Debezium PostgreSQL Connector来实现与PostgreSQL的变更数据捕获。

在Flink 1.14及更高版本中,用户应该查看并使用Flink CDC的连接器模块,该模块提供了与Debezium兼容的连接器,可以直接在Flink SQL中声明性地创建和配置CDC源。这意味着你将不再直接使用PostgreSQLSourcePostgresSourceBuilder,而是使用类似于如下形式的SQL语句来创建一个CDC源:

CREATE TABLE postgresql_source (
    ...
) WITH (
    'connector' = 'debezium-postgres',
    'database.hostname' = 'localhost',
    'database.port' = '5432',
    'database.user' = 'postgres',
    'database.password' = 'secret',
    'database.dbname' = 'mydatabase',
    'database.server.name' = 'dbserver1',
    ...
);


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/595018?spm=a2c6h.13066369.question.47.283f3f33tV2UP8



问题三:Flink CDC里cdc2.3,同步从库。initial模式报错是为什么?


Flink CDC里cdc2.3,同步从库。initial模式在snapshot阶段读了一万多数据就发生了以下错:the slave is connecting using CHANGE MASTER TO MASTER_AUTO_POSITION = 1, but the master has purged binary logs containing GTIDs that the slave requires. Error code: 1236; SQLSTATE: HY000. 如果直接lastest-offset来cdc就没问题是为什么啊?


参考回答:


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/595017?spm=a2c6h.13066369.question.50.283f3f33pUeYqb



问题四:Flink CDC里如何通过降低效率来减少内存占用呢?内存有限的情况下,如何调整啊?


Flink CDC里如何通过降低效率来减少内存占用呢?内存有限的情况下,如何调整啊?


参考回答:

在 Apache Flink CDC 场景下,如果你希望减少内存占用但又不希望停止任务运行,可以从以下几个方面着手进行调整和优化,以牺牲部分效率为代价换取更低的内存使用:

降低并发度:
减少TaskManager上的并行子任务数量,这样每个子任务可以分配到更多的内存资源,但也意味着整体处理速度可能会下降。

优化State Backend:
调整状态后端存储策略,比如从 RocksDB 更改为 MemoryStateBackend 或 FsStateBackend,虽然可能会牺牲查询速度和故障恢复速度,但可以降低内存压力。

限制State大小:
设置状态大小限制,比如设置 state.backend.rocksdb.locality.limits.memorymanaged.state.size,避免状态无限制增长导致内存溢出。

降低维表缓存大小或刷新频率:
如果使用 JDBC 维表 JOIN 并且进行了缓存,可以减少缓存容量或增大缓存失效时间,这样虽然会导致更多数据库查询从而降低效率,但是可以减少内存占用。

调整Flink内部缓冲区大小:
缩小网络缓冲区、排序缓冲区和块管理器的内存分配,如通过配置 taskmanager.network.memory.segment-sizetaskmanager.memory.managed.fraction 等参数来减少内部缓冲。

Schema初始化超时:
如前所述,可以设置 table.scan.startup.timeout 参数来限制 Schema 初始化读取的时间,这样即使牺牲一点启动速度也能防止长时间持有大量内存。

减少并行源的数量:
如果CDC源连接的是多个数据库实例并且是并行读取的,可以适当减少并行源的数量。

优化Join策略和条件:
如果存在大量JOIN操作,尝试简化JOIN逻辑或者只保留必要的JOIN,避免不必要的数据关联带来的内存消耗。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/595015?spm=a2c6h.13066369.question.49.283f3f33aMIAFy



问题五:Flink CDC里flink sql 维表 jdbc lookup join,当左表数据不更新时,维表变动,如何更新结果数据呢?


Flink CDC里flink sql 维表 jdbc lookup join,当左表数据不更新时,维表变动,如何更新结果数据呢?


参考回答:

在 Apache Flink 中,当使用 CDC (Change Data Capture) 处理流式数据并进行维表JOIN时,如果左表(通常是事实表或主表)数据不变动,而维表(通常是维度表或参考表)的数据发生变化,要确保结果数据能够反映最新的维表状态,通常采用以下策略之一:

异步缓存刷新:

Flink 提供了对维表数据进行缓存的能力,并可以通过配置lookup.join.cache.ttl等参数来设置缓存的有效期,超过这个有效期后,Flink会自动从数据库中重新加载维表数据。

动态表或物化视图:

如果维表本身也是通过Flink CDC或其他流式方式提供的,则可以将其定义为Flink的动态表或物化视图,这样维表的任何更新都会自动传播到整个流处理作业中。

增量更新Lookup Join:

对于JDBC Lookup Join,Flink CDC支持监听维表的变更,并能基于这些变更进行增量更新。例如,可以利用TemporalTableFunction实现随时间变化的维表JOIN,当维表有新的更改到达时,后续的JOIN操作会使用最新的维表记录。

周期性全量刷新:

若没有增量更新机制可用,也可以选择定期全量刷新维表缓存,尽管这可能会增加一定的系统负载。

LookupHint机制:

根据之前的信息,Flink CDC可能存在一种机制允许处理维表较主表数据晚到的情况,但这需要进一步确认具体实现细节。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/595014?spm=a2c6h.13066369.question.50.283f3f33drYy4m


相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
1月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
990 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
4月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
248 1
Amoro + Flink CDC 数据融合入湖新体验
|
4月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
864 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
5月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
696 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
3月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
1月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
369 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
10月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3247 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
10月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
429 56

相关产品

  • 实时计算 Flink版