LoRA+:优化模型微调的新方案

简介: 【2月更文挑战第17天】LoRA+:优化模型微调的新方案

22.jpeg
在深度学习领域,模型微调是一项常见而关键的任务。它涉及将预训练的模型调整到特定任务上,以提高其在该任务上的表现。然而,随着模型规模的不断扩大,传统的微调方法面临着计算成本高昂和效率低下的问题。为了解决这一挑战,研究者们提出了一种名为LoRA(Low Rank Adaptation)的方法,它通过在模型的权重矩阵中引入低秩矩阵(适配器)来实现高效的微调。然而,LoRA在处理宽度较大的模型时,由于适配器矩阵A和B使用相同的学习率更新,导致了效率的瓶颈。

为了克服这一限制,研究者们进一步发展了LoRA+算法。LoRA+的核心在于为适配器矩阵A和B设置不同的学习率,通过调整这两个矩阵的学习率比例,可以显著提高微调的效率和性能。具体来说,LoRA+将B的学习率设置为A的学习率的λ倍,其中λ是一个远大于1的固定比率。这种策略不仅保持了与LoRA相同的计算成本,还能在微调过程中实现1%-2%的性能提升和大约2倍的速度提升。

在实际应用中,LoRA+在多个语言模型和任务上进行了广泛的测试。这些模型包括GPT-2、RoBERTa以及Llama,它们在GLUE基准测试和flan-v2数据集上的表现均得到了显著提升。特别是在处理难度较高的任务,如MNLI和QQP时,LoRA+展现出了其优越性。此外,LoRA+在Llama模型的微调中也显示出了显著的性能提升,这表明LoRA+在处理大型模型时具有广泛的适用性。

为了支持LoRA+的理论基础,研究者们还提供了深入的分析。他们证明了在无限宽度网络的极限情况下,LoRA使用相同学习率的微调方法是次优的。LoRA+通过调整学习率比例,有效地纠正了这一问题,实现了更有效的特征学习。研究者们还给出了关于如何选择λ的具体指导,建议在实践中通常将λ设置为24,这在大多数情况下都能提高性能。

LoRA+的提出,为大型模型的微调提供了一种新的、更高效的解决方案。这种方法不仅提高了微调的效率,还有助于在保持计算成本不变的情况下,实现更好的微调性能。

目录
相关文章
|
1月前
|
机器学习/深度学习 存储 自然语言处理
简单聊一聊大模型微调技术-LoRA
LoRA(Low-Rank Adaptation)是一种用于减少大模型微调中参数数量和计算资源的技术。通过引入低秩分解,LoRA 仅更新少量参数,从而显著降低显存消耗和计算需求。适用于大规模预训练模型的微调、跨领域迁移学习、低资源设备部署和多任务学习等场景。例如,在微调 BERT 模型时,LoRA 可以仅调整约 0.1% 的参数,保持与全量微调相近的性能。
95 0
|
21天前
|
人工智能 测试技术 数据处理
首个Mamba+Transformer混合架构多模态大模型来了,实现单卡千图推理
【10月更文挑战第18天】《LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture》提出了一种新型多模态大模型LongLLaVA,结合了Mamba和Transformer架构,通过系统优化实现在单张A100 80GB GPU上处理近千张图像的突破。该模型在视频理解、高分辨率图像分析和多模态智能体任务中表现出色,显著提升了计算效率。
142 64
|
27天前
|
机器学习/深度学习 人工智能 算法
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
65 0
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
|
1月前
|
物联网
StableDiffusion-03 (准备篇)15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(二)
StableDiffusion-03 (准备篇)15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(二)
29 1
|
2月前
|
存储 人工智能 物联网
LoRA大模型微调的利器
LoRA模型是小型的Stable Diffusion模型,它们对checkpoint模型进行微小的调整。它们的体积通常是检查点模型的10到100分之一。因为体积小,效果好,所以lora模型的使用程度比较高。
LoRA大模型微调的利器
|
1月前
|
并行计算 Ubuntu 物联网
StableDiffusion-03 (准备篇)15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(一)
StableDiffusion-03 (准备篇)15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(一)
29 0
|
3月前
|
机器学习/深度学习 并行计算 PyTorch
ONNX 优化技巧:加速模型推理
【8月更文第27天】ONNX (Open Neural Network Exchange) 是一个开放格式,用于表示机器学习模型,使模型能够在多种框架之间进行转换。ONNX Runtime (ORT) 是一个高效的推理引擎,旨在加速模型的部署。本文将介绍如何使用 ONNX Runtime 和相关工具来优化模型的推理速度和资源消耗。
1258 4
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
2024年5月大语言模型论文推荐:模型优化、缩放到推理、基准测试和增强性能
本文汇总了2024年5月发布的七篇重要大语言模型论文,涉及模型优化、缩放、推理及性能增强。
365 2
|
6月前
|
自然语言处理 算法 物联网
如何训练一个大模型:LoRA篇
如何训练一个大模型:LoRA篇
566 1
|
5月前
|
机器学习/深度学习 自然语言处理 物联网
ICML 2024:脱离LoRA架构,训练参数大幅减少,新型傅立叶微调来了
【6月更文挑战第4天】在ICML 2024上,研究团队提出了傅立叶变换微调(FourierFT),一种减少训练参数的新方法,替代了依赖LoRA的微调。FourierFT通过学习权重变化矩阵的稀疏频谱系数,实现了LFMs的高效微调。在多项任务上,FourierFT展示出与LoRA相当或更优的性能,参数量却大幅减少,如在LLaMA2-7B模型上,仅需0.064M参数,对比LoRA的33.5M。广泛实验验证了其在NLP和CV任务上的效果,但未来还需探索其适用性和泛化能力。论文链接:[arxiv.org/abs/2405.03003](https://arxiv.org/abs/2405.03003)
104 0