学习目标:
为什么存在动态内存分配?
动态内存函数的介绍:
1、malloc;
2、free;
3、calloc;
4、realloc;
5、常见的动态内存错误;
6、内存开辟;
6、柔性数组。
为什么存在动态内存分配
一般的开辟空间的方式有两个特点:
1. 空间开辟大小是固定的。
2. 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配
由于对空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道, 那数组的编译时开辟空间的方式就不能满足了。 这时候就只能试试动态存开辟了。
动态内存函数:
1.malloc和free
void* malloc (size_t size);
size:内存块的大小(以字节为单位)。是无符号整型。 size_t
1.1 这个函数向内存申请一块 连续可用 的空间,并返回指向这块空间的指针。
1.2 如果开辟成功,则返回一个指向开辟好空间的指针。
如果开辟失败,则返回一个 NULL 指针,因此 malloc 的返回值 一定要做检查。
1.3 返回值的类型是 void* ,所以 malloc 函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。
1.4 如果参数 size 为 0 , malloc 的行为是标准是未定义的,取决于编译器。
C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收,函数原型如下:
void free (void* ptr);
ptr:指向先前分配有的内存块的指针。
1.1 free 函数用来释放动态开辟的内存。
1.2 如果参数 ptr 指向的空间不是动态开辟的,那 free 函数的行为是未定义的。
1.3 如果参数 ptr 是 NULL 指针,则函数什么事都不做。
1.4 malloc和free都声明在 stdlib.h 头文件中。
#include <stdio.h> int main() { //静态代码 int num = 0; scanf("%d", &num); int arr[num] = {0}; //动态代码 int* ptr = NULL; ptr = (int*)malloc(num*sizeof(int)); //判断ptr指针是否为空 if(NULL != ptr) { int i = 0; for(i=0; i<num; i++) { *(ptr+i) = 0; } } //释放ptr所指向的动态内存 free(ptr); ptr = NULL; return 0; }
2. calloc
void* calloc (size_t num, size_t size);
num:要分配的元素数。
size:每个元素的大小。
2.1 函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且 把空间的每个字节初始化为0。
2.2 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个 字节 初始化为全 0。
#include <stdio.h> #include <stdlib.h> int main() { int *p = (int*)calloc(10, sizeof(int)); if(NULL != p) { //使用这块空间 } free(p); p = NULL; return 0; }
3.realloc
有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时候内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小的调整。
void* realloc (void* ptr, size_t size);
ptr:指向先前分配有的内存块的指针。或者这可以是一个 空指针,在这种情况下,将分配一个新块(就像被调用一样)。
size:内存块的新大小(以字节为单位)。是无符号整型。 size_t
3.1 ptr 是要调整的内存地址。
3.2 size 调整之后新大小。
3.3 返回值为调整之后的内存起始位置。
3.4 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到 新 的空间。
3.5 realloc 在调整内存空间的是存在两种情况:
情况1 :原有空间之后有足够大的空间
要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。
情况2 :原有空间之后没有足够大的空间
原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。
#include <stdio.h> int main() { int *ptr = (int*)malloc(100); if(ptr != NULL) { //业务处理 } else { exit(EXIT_FAILURE); } //扩展容量 //ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?) int*p = NULL; p = realloc(ptr, 1000); if(p != NULL) { ptr = p; } free(ptr); return 0; }
常见的动态内存错误:
1. 对NULL指针的解引用操作
void test() { int *p = (int *)malloc(INT_MAX/4); *p = 20;//如果p的值是NULL,就会有问题 free(p); }
2. 对动态开辟空间的越界访问
void test() { int i = 0; int *p = (int *)malloc(10*sizeof(int)); if(NULL == p) { exit(EXIT_FAILURE); } for(i=0; i<=10; i++) { *(p+i) = i;//当i是10的时候越界访问 } free(p); }
3. 对非动态开辟内存使用free释放
void test() { int a = 10; int *p = &a; free(p);//ok? }
4. 使用free释放一块动态开辟内存的一部分
void test() { int *p = (int *)malloc(100); p++; free(p);//p不再指向动态内存的起始位置 }
5. 对同一块动态内存多次释放
void test() { int *p = (int *)malloc(100); free(p); free(p);//重复释放 }
6. 动态开辟内存忘记释放(内存泄漏)
void test() { int *p = (int *)malloc(100); if(NULL != p) { *p = 20; } } int main() { test(); return 0; }
程序的内存开辟:
C/C++程序内存分配的几个区域:
1. 栈区(stack):在执行函数时,函数内 局部变量 的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。 栈区主要存放运行函数而分配的 局部变量、函数参数、返回数据、返回地址等 。
2. 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分配方式类似于链表。
3. 数据段(静态区):(static)存放全局变量、静态数据。程序结束后由 系统释放 。
4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码。
柔性数组:
typedef struct st_type
{
int i ;
int a []; // 柔性数组成员
} type_a ;
有些编译器会说上述定义错误,可改成:
typedef struct st_type
{
int i ;
int a [ 0 ]; // 柔性数组成员
} type_a ;
1.1 结构中的柔性数组成员前面必须至少一个其他成员。
1.2 sizeof 返回的这种结构大小不包括柔性数组的内存。
1.3 包含柔性数组成员的结构用 malloc () 函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。
typedef struct st_type
{
int i ;
int a [ 0 ]; // 柔性数组成员
} type_a ;
printf ( "%d\n" , sizeof ( type_a )); // 输出的是 4
柔性数组的使用:
int i = 0; //这样柔性数组成员a,相当于获得了100个整型元素的连续空间。 type_a *p = (type_a*)malloc(sizeof(type_a)+100*sizeof(int)); //业务处理 p->i = 100; for(i=0; i<100; i++) { p->a[i] = i; } free(p);
柔性数组的优势:
第一个好处是: 方便内存释放
如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。
第二个好处是: 这样有利于访问速度.
连续的内存有益于提高访问速度,也有益于减少内存碎片(开辟的空间中间的间隔内存没有被利用)。
以上就是个人学习见解和学习的解析,欢迎各位大佬在评论区探讨!
感谢大佬们的一键三连! 感谢大佬们的一键三连! 感谢大佬们的一键三连!