喜欢海淘的朋友应该对eBay并不陌生,如果你还不了解,可以把eBay+PayPal理解为淘宝+支付宝的组合,当然eBay不仅有C2C还有B2C的模式。虽然介绍了背景,但今天要说的并不是电子商务的发展,而是大数据在电商内如何发挥价值。
因为不论国外还是国内的电子商务企业,他们的相同点都是以业务为导向。eBay的做法是用数据驱动商业,其上所有的数据产品都是针对业务而生,数据部门需要对不断变化的用户需求找到解决之法,也就是从客户的行为数据中来寻找价值。
行为数据用混合的手段来处理
数据是eBay发展的基础和价值所在,所以eBay数据服务和解决方案团队从eBay成立的第一天就已经存在,从数据仓库到数据分析再到数据服务,部门的名字一直随着发展在不断变化。但万变不离其宗,数据服务和解决方案团队就是一个针对数据展开想象的部门。
eBay数据服务和解决方案团队分布在美国西雅图、圣何塞以及中国上海,而中国团队全职和外包人员总共将近有100人,其中有不同的职位和分工,包括数据科学家、数据工程师、商业需求分析师、产品经理四大类。两个区域的团队互相协作,共同开发核心数据的同时也支持不同的业务部门。
揭秘eBay四大系统 从行为数据中寻找价值
eBay中国数据服务和解决方案团队主管李炜
eBay目前整体有四大系统,其中三个为生产系统,一个为测试开发系统。生产系统包括:第一,保存交易型数据和用户数据的企业及数据仓库(Enterprise Data Warehouse);第二,Teradata为eBay特别定制的分析系统,主要进行非结构化的用户行为数据处理;第三,专门为数据分析师使用,方便快速找到想要的数据。eBay中国数据服务和解决方案团队主管李炜指出,前两个系统主要为生产环境做批处理,最后一个系统是帮助数据科学家进行测试和制作分析报告。
由于eBay电子商务的性质,其用户行为数据占80%以上,而通过买家和卖家的行为数据eBay可以做很多个性化的应用。买家更喜欢买哪些种类下的产品,有哪些购物习惯、什么时间购买,这些数据可以帮助卖家了解哪些是自己最大的客户群,以及基于机器学习对未来的热点市场进行预测。
“eBay的行为数据都是非结构化数据,这对于关系型数据库的压力非常大。”李炜谈到。因此eBay则使用了混合方案,使用Hadoop来应对海量非结构化数据,将原始数据首先加载到Hadoop上,完成行级结构化处理,在将这些预处理好的数据送到不同的系统,之后处理已经模式化的数据和半结构化数据。
eBay拥有庞大的Hadoop节点和Teradata节点,这也带来了三大挑战:
第一、不同系统间的数据搬移,eBay每天产生的数据量是巨大的,这些数据要在多个平台上搬移,在搬移的过程中要保证不同系统中数据的同步和数据质量。
第二、不同系统的管理,随着eBay系统平台的越来越多样化,对于Teradata和Hadoop等系统的管理,以及搬移数据的管理都需要不断增强。
第三、技术能力提升,不同平台有不同的技术,这就需要员工具备综合技术能力。
只要有业务需求就有数据产品
对于eBay来讲数据平台要具备高可靠性、高可用性、易用性。eBay与Teradata的合作已有20年之久,eBay也是目前Teradata最大的客户之一。李炜回顾了Teradata系统在eBay上这20年中经历了多次演变,到目前为止eBay的核心数据、交易型企业级数据和用户行为数据都在Teradata上进行存储管理和应用。
以数据驱动商业是eBay的文化,大数据平台最终是为了产生价值,现在除了传统的数据整合,eBay在各个业务环境中都有着不同的数据产品。
eBay有一款针对卖家的线上免费工具Seller Hub,可以为每一位卖家进行深入的分析,哪些商品更畅销,产品如何标价才能具备竞争优势等。这中间会使用到数据模型,李炜强调模型不仅仅从eBay网站中的所有类目中调取价格,而且还会比对相似产品的关联价格,最终为卖家提供指导价格。
结合了自身数据和第三方数据也让eBay可以完善网站上不能捕获的一些数据来绘制用户画像,像性别、职业、收入等。包括对用户画像进行分级,哪些是潜力卖家,哪些是高风险买家,从而更精准地进行市场推广。
刚刚更多说的是eBay如何用数据提供一些产品,在内部eBay同样用数据在优化自身网站,在对页面的设计、新功能的设计上都会提供相应的建议。
2016年,eBay还将继续发展B2C和C2C市场,但是eBay有B2C、C2C、二手货多种卖家的存在,如何管理各个类目中的商品成为一个非常大的挑战,eBay要做到把大部分的类目最终关联到结构化的产品系列中,实现精细化的管理。
用户的需求是多样化的,eBay也会有越来越多的需求,未来与Teradata的合作上,不仅仅是硬件一体机层面,在美国eBay已经开始使用了Teradata提供的云服务,并且已经落地了一些具体的应用。
本文转自d1net(转载)