Python学习10

简介: Python学习10

大家好,这里是七七,今天是Python学习专题的最后一期,要介绍两个代码,一个是名称字符串匹配代码,一个是时间序列分解实现代码


首先介绍名称字符串匹配代码。


一、名称字符串匹配代码


import pandas as pd
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
import re
info_data=pd.read_excel("./data/附件1.xlsx")
sale_data=pd.read_excel("./data/附件2.xlsx")
buy_data=pd.read_excel("./data/附件3.xlsx")
loss_data=pd.read_excel("./data/附件4.xlsx")
 
data=pd.merge(buy_data,info_data,on="单品编码",how="left")
data=data[["日期","单品名称"]]
data["日期"]=pd.to_datetime(data["日期"])
data=data.set_index("日期")
 
grouped=data.groupby("日期")
for group_name,group_data in grouped:
    strings=group_data["单品名称"].tolist()
    threshold=80
    similar_strings={}
    for string in strings:
        best_match=process.extractOne(
            string,
            [s for s in strings if s not in [string]],
            scorer=fuzz.ratio)
        if best_match[1]>=threshold and best_match[0]!=string and best_match[0][:2]==string[:2]:
            if re.search(r'\(\d+\)',best_match[0])and re.search(r'\(\d+\)',string):
                similar_strings[string]=best_match[0]
                strings=[s for s in strings if s not in [string]]
    if bool(similar_strings):
        print(group_name)
    for original,similar in similar_strings.items():
        print(f"主要相同的字符串:'{original}‘和'{similar}'")
print(data.info)


二、时间序列分解实现代码


import matplotlib.pyplot as plt
import pandas as pd
from statsmodels.tsa.seasonal import seasonal_decompose
 
plt.rcParams['font.sans-serif'] = [u'simHei']
plt.rcParams['axes.unicode_minus'] = False
 
def time_series_3d(pd_list:list,name):
    num_plots=4
    
    plt.figure(figsize=(8,6))
    
    trend_df=pd.DataFrame()
    
    for df in pd_list:
        
        
        result=seasonal_decompose(df,model='additive',period=365)
        
        for i in range(num_plots):
            if i==1:
                plt.plot(result.trend,label='Trend')
                plt.legend(loc='upper left')
                trend_df[df.name]=result.trend
                
    trend_df.dropna(inplace=True)
    trend_df.to_csv(f"/trend/{name}.csv",encoding="GBK")
    print(trend_df)
    plt.title(name,fontsize=16)
    plt.tight_layout()
    plt.show()
    
######################
#读取数据
 
info_data=pd.read_excel("./data/附件1.xlsx")
sale_data=pd.read_excel("./data/附件2.xlsx")
buy_data=pd.read_excel("./data/附件3.xlsx")
loss_data=pd.read_excel("./data/附件4.xlsx")
 
print(sale_data)
sale_data["销售日期"]=pd.to_datetime(sale_data["销售日期"])
 
rst_data=pd.read_excel("")
 
####################
#处理
 
grouped=rst_data.groupby("品类")
for groupe_name,group_data in grouped:
    group_data["销售日期"]=pd.to_datetime(group_data["销售日期"])
    group_data=group_data.set_index("销售日期")
    
    time_series_3d(group_data["销量(千克)"],group_data["利润率"],group_data["批发价格(元/千克)"],group_data["销售单价(元/千克)"],name=groupe_name)
相关文章
|
3月前
|
存储 JavaScript Java
(Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
dict字典 Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 我们可以通过声明JS对象一样的方式声明dict
282 1
|
3月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
374 0
|
3月前
|
算法 Java Docker
(Python基础)新时代语言!一起学习Python吧!(三):IF条件判断和match匹配;Python中的循环:for...in、while循环;循环操作关键字;Python函数使用方法
IF 条件判断 使用if语句,对条件进行判断 true则执行代码块缩进语句 false则不执行代码块缩进语句,如果有else 或 elif 则进入相应的规则中执行
362 1
|
3月前
|
存储 Java 索引
(Python基础)新时代语言!一起学习Python吧!(二):字符编码由来;Python字符串、字符串格式化;list集合和tuple元组区别
字符编码 我们要清楚,计算机最开始的表达都是由二进制而来 我们要想通过二进制来表示我们熟知的字符看看以下的变化 例如: 1 的二进制编码为 0000 0001 我们通过A这个字符,让其在计算机内部存储(现如今,A 字符在地址通常表示为65) 现在拿A举例: 在计算机内部 A字符,它本身表示为 65这个数,在计算机底层会转为二进制码 也意味着A字符在底层表示为 1000001 通过这样的字符表示进行转换,逐步发展为拥有127个字符的编码存储到计算机中,这个编码表也被称为ASCII编码。 但随时代变迁,ASCII编码逐渐暴露短板,全球有上百种语言,光是ASCII编码并不能够满足需求
196 4
|
8月前
|
安全 数据安全/隐私保护 Python
Python学习的自我理解和想法(27)
本文记录了学习Python第27天的内容,主要介绍了使用Python操作PPTX和PDF的技巧。其中包括通过`python-pptx`库创建PPTX文件的详细步骤,如创建幻灯片对象、选择母版布局、编辑标题与副标题、添加文本框和图片,以及保存文件。此外,还讲解了如何利用`PyPDF2`库为PDF文件加密,涵盖安装库、定义函数、读取文件、设置密码及保存加密文件的过程。文章总结了Python在处理文档时的强大功能,并表达了对读者应用这些技能的期待。
|
4月前
|
JavaScript Java 大数据
基于python的网络课程在线学习交流系统
本研究聚焦网络课程在线学习交流系统,从社会、技术、教育三方面探讨其发展背景与意义。系统借助Java、Spring Boot、MySQL、Vue等技术实现,融合云计算、大数据与人工智能,推动教育公平与教学模式创新,具有重要理论价值与实践意义。
|
6月前
|
算法 IDE 测试技术
python学习需要注意的事项
python学习需要注意的事项
331 57
|
6月前
|
JSON 数据安全/隐私保护 数据格式
拼多多批量下单软件,拼多多无限账号下单软件,python框架仅供学习参考
完整的拼多多自动化下单框架,包含登录、搜索商品、获取商品列表、下单等功能。
|
6月前
|
机器学习/深度学习 数据安全/隐私保护 计算机视觉
过三色刷脸技术,过三色刷脸技术教程,插件过人脸python分享学习
三色刷脸技术是基于RGB三通道分离的人脸特征提取方法,通过分析人脸在不同颜色通道的特征差异

推荐镜像

更多