【DRConv】动态区域感知卷积结构可提升卷积的表示能力 | 复现《Dynamic Region-Aware Convolution》

简介: 【DRConv】动态区域感知卷积结构可提升卷积的表示能力 | 复现《Dynamic Region-Aware Convolution》

前言

  本文将介绍一种新颖的卷积结构——Dynamic Region-Aware Convolution (动态区域感知卷积),该结构采用了一种自适应的机制,能够在不同的感受野内自适应地调整卷积核的大小和形状,从而更好地捕捉输入中不同区域的特征信息。相比于传统的卷积结构,Dynamic Region-Aware Convolution 在各种视觉任务中都表现出了更好的性能。在本文中,我们将详细介绍该结构的设计思想和原理,并复现DRConv的结构供大家参考实验。

设计思想

  DRConv操作的输入包括三个部分:特征图、目标边界框和先验框。其中,目标边界框用于指示需要关注的区域,先验框则提供了卷积核形状和大小的参考。其核心是动态区域感知卷积,该模块可以自适应调整卷积核大小和形状,从而在感受野变化的同时保持卷积核的有效性。

流程步骤

DRConv的实现过程如下:

  1. 首先根据输入特征图大小和步长计算每个卷积窗口的中心点坐标,然后以这些中心点为中心,构造多个不同大小和形状的感受野。
  2. 对于每个感受野,根据其中心点坐标和感受野大小,计算相应的卷积核大小和形状,并使用这些卷积核对输入特征图进行卷积操作。
  3. 最后,将所有感受野的卷积结果进行融合,得到最终的输出特征图。

image.png

优点&贡献

  DRConv 操作的主要优点是可以自适应地调整卷积核的大小和形状,以适应不同大小和形状的物体,从而提高了目标检测的精度和鲁棒性。同时,DRAC 操作还可以与现有的卷积神经网络结构无缝集成,具有较好的通用性和可拓展性。

  DRConv的核心贡献有如下三个方面:

  1. 提出了一种新的动态区域感知卷积,它不仅具有强大的语义表示能力,而且完美地保持了方差特性。
  2. 专门设计了可学习引导Mask的反向传播过程,以便根据反向传播的总体任务损失的梯度来确定和更新区域共享模式,这意味着本文的方法可以以端到端的方式进行优化。
  3. DRConv可以通过简单地替换标准卷积而在图像分类、人脸识别、检测和分割任务上获得优异的性能,而不会增加太多计算成本。

代码:

python

复制代码

import torch.nn.functional as F
import torch.nn as nn
import torch
from torch.autograd import Function
class asign_index(torch.autograd.Function):
    @staticmethod
    def forward(ctx, kernel, guide_feature):
        ctx.save_for_backward(kernel, guide_feature)
        guide_mask = torch.zeros_like(guide_feature).scatter_(1, guide_feature.argmax(dim=1, keepdim=True),
                                                              1).unsqueeze(2)  # B x 3 x 1 x 25 x 25
        return torch.sum(kernel * guide_mask, dim=1)
    @staticmethod
    def backward(ctx, grad_output):
        kernel, guide_feature = ctx.saved_tensors
        guide_mask = torch.zeros_like(guide_feature).scatter_(1, guide_feature.argmax(dim=1, keepdim=True),
                                                              1).unsqueeze(2)  # B x 3 x 1 x 25 x 25
        grad_kernel = grad_output.clone().unsqueeze(1) * guide_mask  # B x 3 x 256 x 25 x 25
        grad_guide = grad_output.clone().unsqueeze(1) * kernel  # B x 3 x 256 x 25 x 25
        grad_guide = grad_guide.sum(dim=2)  # B x 3 x 25 x 25
        softmax = F.softmax(guide_feature, 1)  # B x 3 x 25 x 25
        grad_guide = softmax * (grad_guide - (softmax * grad_guide).sum(dim=1, keepdim=True))  # B x 3 x 25 x 25
        return grad_kernel, grad_guide
def xcorr_slow(x, kernel, kwargs):
    """for loop to calculate cross correlation
    """
    batch = x.size()[0]
    out = []
    for i in range(batch):
        px = x[i]
        pk = kernel[i]
        px = px.view(1, px.size()[0], px.size()[1], px.size()[2])
        pk = pk.view(-1, px.size()[1], pk.size()[1], pk.size()[2])
        po = F.conv2d(px, pk, **kwargs)
        out.append(po)
    out = torch.cat(out, 0)
    return out
def xcorr_fast(x, kernel, kwargs):
    """group conv2d to calculate cross correlation
    """
    batch = kernel.size()[0]
    pk = kernel.view(-1, x.size()[1], kernel.size()[2], kernel.size()[3])
    px = x.view(1, -1, x.size()[2], x.size()[3])
    po = F.conv2d(px, pk, **kwargs, groups=batch)
    po = po.view(batch, -1, po.size()[2], po.size()[3])
    return po
class Corr(Function):
    @staticmethod
    def symbolic(g, x, kernel, groups):
        return g.op("Corr", x, kernel, groups_i=groups)
    @staticmethod
    def forward(self, x, kernel, groups, kwargs):
        """group conv2d to calculate cross correlation
        """
        batch = x.size(0)
        channel = x.size(1)
        x = x.view(1, -1, x.size(2), x.size(3))
        kernel = kernel.view(-1, channel // groups, kernel.size(2), kernel.size(3))
        out = F.conv2d(x, kernel, **kwargs, groups=groups * batch)
        out = out.view(batch, -1, out.size(2), out.size(3))
        return out
class Correlation(nn.Module):
    use_slow = True
    def __init__(self, use_slow=None):
        super(Correlation, self).__init__()
        if use_slow is not None:
            self.use_slow = use_slow
        else:
            self.use_slow = Correlation.use_slow
    def extra_repr(self):
        if self.use_slow: return "xcorr_slow"
        return "xcorr_fast"
    def forward(self, x, kernel, **kwargs):
        if self.training:
            if self.use_slow:
                return xcorr_slow(x, kernel, kwargs)
            else:
                return xcorr_fast(x, kernel, kwargs)
        else:
            return Corr.apply(x, kernel, 1, kwargs)
class DRConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, region_num=8, **kwargs):
        super(DRConv2d, self).__init__()
        self.region_num = region_num
        self.conv_kernel = nn.Sequential(
            nn.AdaptiveAvgPool2d((kernel_size, kernel_size)),
            nn.Conv2d(in_channels, region_num * region_num, kernel_size=1),
            nn.Sigmoid(),
            nn.Conv2d(region_num * region_num, region_num * in_channels * out_channels, kernel_size=1,
                      groups=region_num)
        )
        self.conv_guide = nn.Conv2d(in_channels, region_num, kernel_size=kernel_size, **kwargs)
        self.corr = Correlation(use_slow=False)
        self.kwargs = kwargs
        self.asign_index = asign_index.apply
    def forward(self, input):
        kernel = self.conv_kernel(input)
        kernel = kernel.view(kernel.size(0), -1, kernel.size(2), kernel.size(3))  # B x (r*in*out) x W X H
        output = self.corr(input, kernel, **self.kwargs)  # B x (r*out) x W x H
        output = output.view(output.size(0), self.region_num, -1, output.size(2), output.size(3))  # B x r x out x W x H
        guide_feature = self.conv_guide(input)
        output = self.asign_index(output, guide_feature)
        return output
if __name__ == "__main__":
    x1 = torch.zeros(1, 3, 640, 640)
    conv = DRConv2d(in_channels=3, out_channels=64, kernel_size=1)
    y = conv(x1)
    print(y.shape)

总结

  该方法的实现相对简单,可以通过添加一些卷积和池化层来完成,同时也可以与其他深度学习技术相结合,如目标检测、图像分类等。希望这篇博客可以为读者提供一个清晰的介绍,帮助他们理解动态区域感知卷积的工作原理和实现方法,并为他们深入研究该领域提供一些启示。


相关文章
|
3天前
|
机器学习/深度学习 算法 PyTorch
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
359 1
|
3天前
|
机器学习/深度学习 编解码 文件存储
YOLOv8改进 | 2023Neck篇 | BiFPN双向特征金字塔网络(附yaml文件+代码)
YOLOv8改进 | 2023Neck篇 | BiFPN双向特征金字塔网络(附yaml文件+代码)
353 0
|
3天前
|
机器学习/深度学习 测试技术 Ruby
YOLOv8改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
YOLOv8改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
112 0
|
移动开发 文字识别 算法
论文推荐|[PR 2019]SegLink++:基于实例感知与组件组合的任意形状密集场景文本检测方法
本文简要介绍Pattern Recognition 2019论文“SegLink++: Detecting Dense and Arbitrary-shaped Scene Text by Instance-aware Component Grouping”的主要工作。该论文提出一种对文字实例敏感的自下而上的文字检测方法,解决了自然场景中密集文本和不规则文本的检测问题。
1883 0
论文推荐|[PR 2019]SegLink++:基于实例感知与组件组合的任意形状密集场景文本检测方法
|
3天前
|
机器学习/深度学习 测试技术 Ruby
YOLOv5改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
YOLOv5改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
147 2
|
3天前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 2023 | FocalModulation替换SPPF(精度更高的空间金字塔池化)
YOLOv8改进 | 2023 | FocalModulation替换SPPF(精度更高的空间金字塔池化)
121 2
|
3天前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | 2023 | FocalModulation替换SPPF(精度更高的空间金字塔池化)
YOLOv5改进 | 2023 | FocalModulation替换SPPF(精度更高的空间金字塔池化)
106 0
|
3天前
|
机器学习/深度学习 网络架构 计算机视觉
YOLOv8改进有效涨点系列->适合多种检测场景的BiFormer注意力机制(Bi-level Routing Attention)
YOLOv8改进有效涨点系列->适合多种检测场景的BiFormer注意力机制(Bi-level Routing Attention)
186 0
|
6月前
|
人工智能 API
Chain-Of-Note:解决噪声数据、不相关文档和域外场景来改进RAG的表现
CoN框架由三种不同的类型组成,研究称之为阅读笔记。
59 0
|
9月前
|
机器学习/深度学习 编解码 数据可视化
ConvNeXt V2:与屏蔽自动编码器共同设计和缩放ConvNets,论文+代码+实战
ConvNeXt V2:与屏蔽自动编码器共同设计和缩放ConvNets,论文+代码+实战