【论文复现】经典再现:yolov4的主干网络重构(结合Slim-neck by GSConv)

简介: 【论文复现】经典再现:yolov4的主干网络重构(结合Slim-neck by GSConv)

前言

  本文接着上一篇【论文复现】针对yoloV5-L部分的YoloBody部分重构(Slim-neck by GSConv)中叙述的论文[1]接着复现的yoloV4,这两篇文章的基础函数基本一致,没有其他函数的加入,因此本文也将省去函数拆解部分。若大家想知道的更详细,可以移步【论文复现】针对yoloV5-L部分的YoloBody部分重构(Slim-neck by GSConv),望见谅!感谢!

  本文同上篇一样:不赘述原理部分,将把精力放在复现论文中关于YoloBady主题结构上面,YoloBady取自bubbliiiing的 yoloV4 网络,所以关于yoloV4的原始部分也请大家移步yoloV4的官方讲解和bubbliiiing的讲解。

   关键词:小目标检测、边缘设备、轻量化、效率精度

参数流程

  开门见山,不多废话。我们直接在论文的第五页与第六页处可以得如图1的关于yoloV4的网络Slim-neck by GSConv部分与原版部分的比较参数流程表,左侧的为Slim-neck by GSConv版的。我们结合参数流程表与论文中的第13页的流程图(图2),一一对应各个环节的参数可以得到图三的参数流程图。

图1

image.png

图2

image.png

图3

image.png

  在图三中我们默认输入的图像shape=[640,640],相比较V4与V5,v4的结构层数较V5的要复杂,卷积层的推演以及参数的合并部分需要大家小心注意。

YoloBady

ini

复制代码

from nets import *
class YoloBody(nn.Module):
    def __init__(self, anchors_mask, num_classes, phi, pretrained=False, input_shape=[640, 640]):
        super(YoloBody, self).__init__()
        depth_dict = {'n': 0.33, 's': 0.33, 'm': 0.67, 'l': 1.00, 'x': 1.33, }
        width_dict = {'n': 0.25, 's': 0.50, 'm': 0.75, 'l': 1.00, 'x': 1.25, }
        dep_mul, wid_mul = depth_dict[phi], width_dict[phi]
        base_channels = int(wid_mul * 64)  # 64
        base_depth = max(round(dep_mul * 3), 1)  # 3
        # -----------------------------------------------#
        #   输入图片是640, 640, 3
        #   初始的基本通道是64
        # -----------------------------------------------#
        self.backbone = CSPDarknet(base_channels, base_depth, phi, pretrained)
        self.upsample = nn.Upsample(scale_factor=2, mode="nearest")
        self.concat = Concat(dimension=1)
        self.SPPF = SPPF(base_channels * 16, base_channels * 8)  # 1024 ---> 512
        self.P4Conv = Conv(base_channels * 8, base_channels * 4)  # 1,512,40,40 ---> 1,256,40,40
        self.P3Conv = Conv(base_channels * 4, base_channels * 2)  # 1,512,40,40 ---> 1,256,40,40
        self.P5GSConv = GSConv(base_channels * 8, base_channels * 4)  # 1,512,20,20 ---> 1,256,20,20
        self.P4VoV = VoVGSCSP(base_channels * 8, base_channels * 4)  # 1,512,40,40 ---> 1,256,40,40
        self.P4GSConv = GSConv(base_channels * 4, base_channels * 2)  # 1,256,40,40 ---> 1,128,40,40
        self.P3VoV = VoVGSCSP(base_channels * 4, base_channels * 2)  # 1,256,80,80 ---> 1,128,80,80
        self.P3GSConvH = GSConv(base_channels * 2, base_channels * 4)  # 1,128,80,80 ---> 1,256,80,80
        self.P3GSConv = GSConv(base_channels * 2, base_channels * 4, 3, 2)  # 1,128,80,80 ---> 1,256,40,40
        self.Head2VoV = VoVGSCSP(base_channels * 8, base_channels * 4)  # 1,512,40,40 ---> 1,256,40,40
        self.Head2GSConv = GSConv(base_channels * 4, base_channels * 8)  # 1,256,40,40 ---> 1,512,40,40
        self.Head3GSConv1 = GSConv(base_channels * 4, base_channels * 8, 3, 2)  # 1,256,20,20 ---> 1,512,20,20
        self.Head3VoV = VoVGSCSP(base_channels * 16, base_channels * 8)  # 1,1024,20,20 ---> 1,512,20,20
        self.Head3GSConv2 = GSConv(base_channels * 8, base_channels * 16)  # 1,512,20,20 ---> 1,1024,20,20
        self.yolo_head_P3 = nn.Conv2d(base_channels * 4, len(anchors_mask[2]) * (5 + num_classes), 1)
        self.yolo_head_P4 = nn.Conv2d(base_channels * 8, len(anchors_mask[1]) * (5 + num_classes), 1)
        self.yolo_head_P5 = nn.Conv2d(base_channels * 16, len(anchors_mask[0]) * (5 + num_classes), 1)
    def forward(self, x):
        P3, P4, P5 = self.backbone(x)
        P5SPPF = self.SPPF(P5)
        P5 = self.P5GSConv(P5SPPF)
        P5P5SPPF_Up = self.upsample(P5)
        P4 = self.P4Conv(P4)
        P4 = self.concat([P4, P5P5SPPF_Up])
        P4VoV = self.P4VoV(P4)
        P4 = self.P4GSConv(P4VoV)
        P4_Up = self.upsample(P4)
        P3 = self.P3Conv(P3)
        P3 = self.concat([P3, P4_Up])
        P3 = self.P3VoV(P3)
        Head1 = self.P3GSConvH(P3)
        P3G = self.P3GSConv(P3)
        P3C = self.concat([P3G, P4VoV])
        Head2VoV = self.Head2VoV(P3C)
        Head2 = self.Head2GSConv(Head2VoV)
        Head3G1 = self.Head3GSConv1(Head2VoV)
        Head3C = self.concat([Head3G1, P5SPPF])
        Head3V = self.Head3VoV(Head3C)
        Head3 = self.Head3GSConv2(Head3V)
        Out1 = self.yolo_head_P3(Head1)
        Out2 = self.yolo_head_P4(Head2)
        Out3 = self.yolo_head_P5(Head3)
        return Out3, Out2, Out1
if __name__ == "__main__":
    anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
    num_classes = 80
    phi = 'l'
    model = YoloBody(anchors_mask, num_classes, phi, pretrained=False)
    x = torch.ones((1, 3, 640, 640))
    Out3, Out2, Out1 = model(x)
    print(Out3.shape, Out2.shape, Out1.shape)

结果展示图:

  下图取自论文。左侧为官方源代码结果图,右侧为Slim-neck by GSConv改进后的结果图。

image.png

结尾

  由于本人能力有限若文中有纰漏还请多多指正,感谢大家的阅读,希望本文对大家有所帮助,需要代码可以进入我的仓库自取。结合bubbliiiing的代码和我重构的YoloBady即可。

[1] 《Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles》 [2] github.com/alanli1997/…

[3] link.juejin.cn/?target=htt…


相关文章
|
2月前
|
机器学习/深度学习 编解码 计算机视觉
【APFN】从大佬论文中探索如何分析改进金字塔网络
【APFN】从大佬论文中探索如何分析改进金字塔网络
45 0
|
2月前
|
机器学习/深度学习 存储 算法
【复现】尝试使用numpy对卷积神经网络中各经典结构进行改写复现
【复现】尝试使用numpy对卷积神经网络中各经典结构进行改写复现
39 0
【复现】尝试使用numpy对卷积神经网络中各经典结构进行改写复现
|
2月前
|
机器学习/深度学习 计算机视觉 网络架构
【GhostNet】复现CVPR2020| 保证模型轻量化的同时,提升网络的性能表现
【GhostNet】复现CVPR2020| 保证模型轻量化的同时,提升网络的性能表现
40 0
【GhostNet】复现CVPR2020| 保证模型轻量化的同时,提升网络的性能表现
|
1月前
|
机器学习/深度学习 开发者
论文介绍:基于扩散神经网络生成的时空少样本学习
【2月更文挑战第28天】论文介绍:基于扩散神经网络生成的时空少样本学习
16 1
论文介绍:基于扩散神经网络生成的时空少样本学习
|
2月前
|
机器学习/深度学习 计算机视觉 Python
【SKConv】即插即用!来自CVPR 2019的选择性内核网络帮你论文涨点
【SKConv】即插即用!来自CVPR 2019的选择性内核网络帮你论文涨点
57 0
【SKConv】即插即用!来自CVPR 2019的选择性内核网络帮你论文涨点
|
1月前
|
机器学习/深度学习 数据采集 人工智能
m基于深度学习网络的手势识别系统matlab仿真,包含GUI界面
m基于深度学习网络的手势识别系统matlab仿真,包含GUI界面
43 0
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络的火焰烟雾检测系统matlab仿真
基于yolov2深度学习网络的火焰烟雾检测系统matlab仿真
|
1月前
|
机器学习/深度学习 算法 计算机视觉
m基于深度学习网络的性别识别系统matlab仿真,带GUI界面
m基于深度学习网络的性别识别系统matlab仿真,带GUI界面
29 2
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络的视频手部检测算法matlab仿真
基于yolov2深度学习网络的视频手部检测算法matlab仿真
|
1月前
|
机器学习/深度学习 算法 数据库
基于CNN卷积网络的MNIST手写数字识别matlab仿真,CNN编程实现不使用matlab工具箱
基于CNN卷积网络的MNIST手写数字识别matlab仿真,CNN编程实现不使用matlab工具箱