探索LightGBM:异常值处理与鲁棒建模

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 探索LightGBM:异常值处理与鲁棒建模【2月更文挑战第2天】

导言

异常值是数据中的特殊点,可能导致模型的不准确性和不稳定性。在使用LightGBM进行建模时,处理异常值是非常重要的一步,以确保模型的鲁棒性和可靠性。本教程将详细介绍如何在Python中使用LightGBM进行异常值处理和鲁棒建模,并提供相应的代码示例。

加载数据

首先,我们需要加载数据集并准备数据用于模型训练。以下是一个简单的示例:

import lightgbm as lgb
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split

# 加载数据集
boston = load_boston()
X, y = boston.data, boston.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

异常值处理

在训练模型之前,我们需要识别和处理异常值。一种常用的方法是使用箱线图或者Z-score来检测异常值,并进行相应的处理。以下是一个简单的示例:

from scipy import stats

# 计算Z-score
z_scores = stats.zscore(X_train)

# 定义阈值
threshold = 3

# 检测异常值
outliers = (z_scores > threshold).any(axis=1)

# 剔除异常值
X_train_filtered = X_train[~outliers]
y_train_filtered = y_train[~outliers]

鲁棒建模

在处理完异常值后,我们可以使用过滤后的数据进行建模。以下是一个简单的示例:

# 定义数据集
train_data_filtered = lgb.Dataset(X_train_filtered, label=y_train_filtered)

# 定义参数
params = {
   
    'objective': 'regression',
    'metric': 'mse',
}

# 训练模型
num_round = 100
lgb_model_filtered = lgb.train(params, train_data_filtered, num_round)

# 在测试集上评估模型
y_pred = lgb_model_filtered.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)

结论

通过本教程,您学习了如何在Python中使用LightGBM进行异常值处理和鲁棒建模。我们加载了数据集并准备了数据,然后使用Z-score方法检测和剔除异常值。最后,我们使用剔除异常值后的数据进行建模,并在测试集上评估了模型性能。
通过这篇博客教程,您可以详细了解如何在Python中使用LightGBM进行异常值处理和鲁棒建模。您可以根据需要对代码进行修改和扩展,以满足特定的异常值处理和建模需求。

目录
相关文章
|
6月前
|
机器学习/深度学习 数据采集 监控
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
925 0
|
6月前
|
机器学习/深度学习 人工智能 运维
[ICLR2024]基于对比稀疏扰动技术的时间序列解释框架ContraLSP
《Explaining Time Series via Contrastive and Locally Sparse Perturbations》被机器学习领域顶会ICLR 2024接收。该论文提出了一种创新的基于扰动技术的时间序列解释框架ContraLSP,该框架主要包含一个学习反事实扰动的目标函数和一个平滑条件下稀疏门结构的压缩器。论文在白盒时序预测,黑盒时序分类等仿真数据,和一个真实时序数据集分类任务中进行了实验,ContraLSP在解释性能上超越了SOTA模型,显著提升了时间序列数据解释的质量。
|
机器学习/深度学习 算法 Python
K最近邻算法:简单高效的分类和回归方法(三)
K最近邻算法:简单高效的分类和回归方法(三)
|
5月前
|
存储 机器学习/深度学习 算法
使用决策树算法预测隐形眼镜类型
使用决策树算法预测隐形眼镜类型
43 2
|
6月前
|
机器学习/深度学习 人工智能
【机器学习】有哪些指标,可以检查回归模型是否良好地拟合了数据?
【5月更文挑战第16天】【机器学习】有哪些指标,可以检查回归模型是否良好地拟合了数据?
|
6月前
|
机器学习/深度学习 算法 数据可视化
Python用KNN(K-近邻)回归、分类、异常值检测预测房价、最优K值选取、误差评估可视化
Python用KNN(K-近邻)回归、分类、异常值检测预测房价、最优K值选取、误差评估可视化
|
6月前
|
Python
Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享
Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享
|
数据采集 存储 运维
K最近邻算法:简单高效的分类和回归方法
K最近邻算法:简单高效的分类和回归方法
|
6月前
|
数据可视化
R语言非参数模型厘定保险费率:局部回归、广义相加模型GAM、样条回归
R语言非参数模型厘定保险费率:局部回归、广义相加模型GAM、样条回归
|
6月前
|
数据可视化 Python
PYTHON 贝叶斯概率推断序列数据概率和先验、似然和后验图可视化
PYTHON 贝叶斯概率推断序列数据概率和先验、似然和后验图可视化
下一篇
无影云桌面