探索LightGBM:异常值处理与鲁棒建模

本文涉及的产品
大数据开发治理平台 DataWorks,不限时长
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 探索LightGBM:异常值处理与鲁棒建模【2月更文挑战第2天】

导言

异常值是数据中的特殊点,可能导致模型的不准确性和不稳定性。在使用LightGBM进行建模时,处理异常值是非常重要的一步,以确保模型的鲁棒性和可靠性。本教程将详细介绍如何在Python中使用LightGBM进行异常值处理和鲁棒建模,并提供相应的代码示例。

加载数据

首先,我们需要加载数据集并准备数据用于模型训练。以下是一个简单的示例:

import lightgbm as lgb
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split

# 加载数据集
boston = load_boston()
X, y = boston.data, boston.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

异常值处理

在训练模型之前,我们需要识别和处理异常值。一种常用的方法是使用箱线图或者Z-score来检测异常值,并进行相应的处理。以下是一个简单的示例:

from scipy import stats

# 计算Z-score
z_scores = stats.zscore(X_train)

# 定义阈值
threshold = 3

# 检测异常值
outliers = (z_scores > threshold).any(axis=1)

# 剔除异常值
X_train_filtered = X_train[~outliers]
y_train_filtered = y_train[~outliers]

鲁棒建模

在处理完异常值后,我们可以使用过滤后的数据进行建模。以下是一个简单的示例:

# 定义数据集
train_data_filtered = lgb.Dataset(X_train_filtered, label=y_train_filtered)

# 定义参数
params = {
   
    'objective': 'regression',
    'metric': 'mse',
}

# 训练模型
num_round = 100
lgb_model_filtered = lgb.train(params, train_data_filtered, num_round)

# 在测试集上评估模型
y_pred = lgb_model_filtered.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)

结论

通过本教程,您学习了如何在Python中使用LightGBM进行异常值处理和鲁棒建模。我们加载了数据集并准备了数据,然后使用Z-score方法检测和剔除异常值。最后,我们使用剔除异常值后的数据进行建模,并在测试集上评估了模型性能。
通过这篇博客教程,您可以详细了解如何在Python中使用LightGBM进行异常值处理和鲁棒建模。您可以根据需要对代码进行修改和扩展,以满足特定的异常值处理和建模需求。

目录
相关文章
|
1月前
【视频】线性回归中的贝叶斯推断与R语言预测工人工资数据|数据分享-3
【视频】线性回归中的贝叶斯推断与R语言预测工人工资数据|数据分享
【视频】线性回归中的贝叶斯推断与R语言预测工人工资数据|数据分享-3
|
8天前
|
机器学习/深度学习 算法
GBDT算法超参数评估(一)
GBDT(Gradient Boosting Decision Tree)是一种强大的机器学习技术,用于分类和回归任务。超参数调整对于发挥GBDT性能至关重要。其中,`n_estimators`是一个关键参数,它决定了模型中弱学习器(通常是决策树)的数量。增加`n_estimators`可以提高模型的复杂度,提升预测精度,但也可能导致过拟合,并增加训练时间和资源需求。
|
8天前
|
机器学习/深度学习 算法
GBDT算法超参数评估(二)
GBDT算法超参数评估关注决策树的不纯度指标,如基尼系数和信息熵,两者衡量数据纯度,影响树的生长。默认使用基尼系数,计算快速,而信息熵更敏感但计算慢。GBDT的弱评估器默认最大深度为3,限制了过拟合,不同于随机森林。由于Boosting的内在机制,过拟合控制更多依赖数据和参数如`max_features`。相比Bagging,Boosting通常不易过拟合。评估模型常用`cross_validate`和`KFold`交叉验证。
|
1月前
|
机器学习/深度学习 人工智能
【机器学习】有哪些指标,可以检查回归模型是否良好地拟合了数据?
【5月更文挑战第16天】【机器学习】有哪些指标,可以检查回归模型是否良好地拟合了数据?
|
1月前
|
机器学习/深度学习 数据可视化
数据分享|R语言逻辑回归Logisitc逐步回归训练与验证样本估计分析心脏病数据参数可视化
数据分享|R语言逻辑回归Logisitc逐步回归训练与验证样本估计分析心脏病数据参数可视化
|
1月前
|
机器学习/深度学习 算法 数据可视化
Python用KNN(K-近邻)回归、分类、异常值检测预测房价、最优K值选取、误差评估可视化
Python用KNN(K-近邻)回归、分类、异常值检测预测房价、最优K值选取、误差评估可视化
|
1月前
|
资源调度 数据可视化
【视频】线性回归中的贝叶斯推断与R语言预测工人工资数据|数据分享-1
【视频】线性回归中的贝叶斯推断与R语言预测工人工资数据|数据分享
【视频】线性回归中的贝叶斯推断与R语言预测工人工资数据|数据分享-1
|
1月前
|
数据挖掘
【视频】线性回归中的贝叶斯推断与R语言预测工人工资数据|数据分享-2
【视频】线性回归中的贝叶斯推断与R语言预测工人工资数据|数据分享
【视频】线性回归中的贝叶斯推断与R语言预测工人工资数据|数据分享-2
|
1月前
|
机器学习/深度学习
R语言用局部加权回归(Lowess)对logistic逻辑回归诊断和残差分析
R语言用局部加权回归(Lowess)对logistic逻辑回归诊断和残差分析
|
1月前
|
Python
Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享
Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享