微服务治理的常用四种方法

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: 【2月更文挑战第1天】

一次服务调用,服务提供者、注册中心、网络这三者都可能会有问题,此时服务消费者应该如何处理才能确保调用成功呢?这就是服务治理要解决的问题。


1、节点管理

服务调用失败一般是由两类原因引起的,一类是服务提供者自身出现问题,如服务器宕机、进程意外退出等;一类是网络问题,如服务提供者、注册中心、服务消费者这三者任意两者之间的网络出现问题。

无论是服务提供者自身出现问题还是网络发生问题,都有两种节点管理手段。


1、注册中心主动摘除机制

这种机制要求服务提供者定时的主动向注册中心汇报心跳,注册中心根据服务提供者节点最近一次汇报心跳的时间与上一次汇报心跳时间做比较,如果超出一定时间,就认为服务提供者出现问题,继而把节点从服务列表中摘除,并把最近的可用服务节点列表推送给服务消费者。


2、服务消费者摘除机制

虽然注册中心主动摘除机制可以解决服务提供者节点异常的问题,但如果是因为注册中心与服务提供者之间的网络出现异常,最坏的情况是注册中心会把服务节点全部摘除,导致服务消费者没有可用的服务节点调用,但其实这时候服务提供者本身是正常的。所以,将存活探测机制用在服务消费者这一端更合理,如果服务消费者调用服务提供者节点失败,就将这个节点从内存中保存的可用服务提供者节点列表中移除。


2、负载均衡

一般情况下,服务提供者节点不是唯一的,多是以集群的方式存在,尤其是对于大规模的服务调用来说,服务提供者节点数目可能有上百上千个。由于机器采购批次的不同,不同服务节点本身的配置也可能存在很大差异,新采购的机器 CPU 和内存配置可能要高一些,同等请求量情况下,性能要好于旧的机器。对于服务消费者而言,在从服务列表中选取可用节点时,如果能让配置较高的新机器多承担一些流量的话,就能充分利用新机器的性能。这就需要对负载均衡算法做一些调整。


常用的负载均衡算法主要包括以下几种。


1、随机算法

顾名思义就是从可用的服务节点中随机选取一个节点。一般情况下,随机算法是均匀的,也就是说后端服务节点无论配置好坏,最终得到的调用量都差不多。


2、轮询算法

就是按照固定的权重,对可用服务节点进行轮询。如果所有服务节点的权重都是相同的,则每个节点的调用量也是差不多的。但可以给某些硬件配置较好的节点的权重调大些,这样的话就会得到更大的调用量,从而充分发挥其性能优势,提高整体调用的平均性能。


3、最少活跃调用算法

这种算法是在服务消费者这一端的内存里动态维护着同每一个服务节点之间的连接数,当调用某个服务节点时,就给与这个服务节点之间的连接数加 1,调用返回后,就给连接数减 1。然后每次在选择服务节点时,根据内存里维护的连接数倒序排列,选择连接数最小的节点发起调用,也就是选择了调用量最小的服务节点,性能理论上也是最优的。


4、一致性 Hash 算法

指相同参数的请求总是发到同一服务节点。当某一个服务节点出现故障时,原本发往该节点的请求,基于虚拟节点机制,平摊到其他节点上,不会引起剧烈变动。


这几种算法的实现难度也是逐步提升的,所以选择哪种节点选取的负载均衡算法要根据实际场景而定。如果后端服务节点的配置没有差异,同等调用量下性能也没有差异的话,选择随机或者轮询算法比较合适;如果后端服务节点存在比较明显的配置和性能差异,选择最少活跃调用算法比较合适。


3、服务路由

对于服务消费者而言,在内存中的可用服务节点列表中选择哪个节点不仅由负载均衡算法决定,还由路由规则确定。


所谓的路由规则,就是通过一定的规则如条件表达式或者正则表达式来限定服务节点的选择范围。为什么要制定路由规则呢?主要有两个原因。


1、业务存在灰度发布的需求

比如,服务提供者做了功能变更,但希望先只让部分人群使用,然后根据这部分人群的使用反馈,再来决定是否做全量发布。这个时候,就可以通过类似按尾号进行灰度的规则限定只有一定比例的人群才会访问新发布的服务节点。


2、多机房就近访问的需求

大部分业务规模中等及以上的公司,为了业务的高可用性,都会将自己的业务部署在不止一个 IDC 中。这个时候就存在一个问题,不同 IDC 之间的访问由于要跨 IDC,通过专线访问,尤其是 IDC 相距比较远时延迟就会比较大,比如北京和广州的专线延迟一般在 30ms 左右,这对于某些延时敏感性的业务是不可接受的,所以就要一次服务调用尽量选择同一个 IDC 内部的节点,从而减少网络耗时开销,提高性能。这时一般可以通过 IP 段规则来控制访问,在选择服务节点时,优先选择同一 IP 段的节点。


路由规则一般有两种配置方式。


1、静态配置

就是在服务消费者本地存放服务调用的路由规则,在服务调用期间,路由规则不会发生改变,要想改变就需要修改服务消费者本地配置,上线后才能生效。


2、动态配置

这种方式下,路由规则是存在注册中心的,服务消费者定期去请求注册中心来保持同步,要想改变服务消费者的路由配置,可以通过修改注册中心的配置,服务消费者在下一个同步周期之后,就会请求注册中心来更新配置,从而实现动态更新。


4、服务容错

服务调用并不总是一定成功的,可能因为服务提供者节点自身宕机、进程异常退出或者服务消费者与提供者之间的网络出现故障等原因。对于服务调用失败的情况,需要有手段自动恢复,来保证调用成功。

常用的手段主要有以下几种。


  • FailOver:失败自动切换。就是服务消费者发现调用失败或者超时后,自动从可用的服务节点列表总选择下一个节点重新发起调用,也可以设置重试的次数。这种策略要求服务调用的操作必须是幂等的,也就是说无论调用多少次,只要是同一个调用,返回的结果都是相同的,一般适合服务调用是读请求的场景。
  • FailBack:失败通知。就是服务消费者调用失败或者超时后,不再重试,而是根据失败的详细信息,来决定后续的执行策略。比如对于非幂等的调用场景,如果调用失败后,不能简单地重试,而是应该查询服务端的状态,看调用到底是否实际生效,如果已经生效了就不能再重试了;如果没有生效可以再发起一次调用。
  • FailCache:失败缓存。就是服务消费者调用失败或者超时后,不立即发起重试,而是隔一段时间后再次尝试发起调用。比如后端服务可能一段时间内都有问题,如果立即发起重试,可能会加剧问题,反而不利于后端服务的恢复。如果隔一段时间待后端节点恢复后,再次发起调用效果会更好。
  • FailFast:快速失败。就是服务消费者调用一次失败后,不再重试。实际在业务执行时,一般非核心业务的调用,会采用快速失败策略,调用失败后一般就记录下失败日志就返回了。


一般情况下对于幂等的调用,可以选择 FailOver 或者 FailCache,非幂等的调用可以选择 FailBack 或者 FailFast。


上述服务治理的手段是最常用的手段,它们从不同角度来确保服务调用的成功率。节点管理是从服务节点健康状态角度来考虑,负载均衡和服务路由是从服务节点访问优先级角度来考虑,而服务容错是从调用的健康状态角度来考虑,可谓是殊途同归。


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
6月前
|
监控 Kubernetes Cloud Native
云原生架构下的微服务治理之道
【7月更文挑战第30天】在数字化转型的浪潮中,企业级应用正迅速向云原生架构迁移。本文将深入探讨云原生环境下微服务治理的最佳实践,包括服务发现、配置管理、流量控制等关键策略,并结合实例分析如何在保障系统弹性、可维护性的同时,优化资源利用效率和加快业务创新速度。
66 2
|
6月前
|
运维 Kubernetes Cloud Native
云原生架构下的微服务治理之道
【7月更文挑战第20天】在数字化转型的浪潮中,企业纷纷拥抱云原生,以期实现更高效的资源利用、更快的业务迭代和更强的系统稳定性。本文将深入探讨如何通过云原生架构优化微服务的治理,确保系统的高可用性和可维护性,同时提升开发效率和运维灵活性。我们将从微服务治理的核心原则出发,结合具体案例,分析在云环境中实施微服务治理的策略与挑战。
60 2
|
6月前
|
监控 Cloud Native 安全
云原生架构下的微服务治理实践
在数字化转型的浪潮中,云原生技术以其灵活性和可扩展性成为现代软件工程的基石。本文将深入探讨云原生架构下微服务治理的实践路径,从微服务的拆分、容器化部署、服务网格的应用到最终的监控与故障排除,提供一套全面的方法论。文章旨在为读者呈现一个清晰的云原生环境下,如何高效管理和维护微服务系统的全景图。
70 2
|
6月前
|
负载均衡 Cloud Native 云计算
云原生架构下的微服务治理与挑战
随着云计算技术的不断演进,云原生架构已成为现代应用开发的首选模式。本文将深入探讨在云原生环境下,微服务治理的重要性、实现方法及所面临的挑战。通过分析微服务治理的关键要素如服务发现、配置管理、负载均衡和故障转移等,揭示如何在高度动态的云环境中保持服务的高可用性和灵活性。同时,本文也将指出在实施微服务治理过程中可能遇到的技术难题和应对策略,为构建健壮的云原生应用提供指导。
|
6月前
|
监控 负载均衡 Java
Spring Boot与微服务治理框架的集成
Spring Boot与微服务治理框架的集成
|
7月前
|
负载均衡 Java 开发者
细解微服务架构实践:如何使用Spring Cloud进行Java微服务治理
【6月更文挑战第30天】Spring Cloud是Java微服务治理明星框架,整合Eureka(服务发现)、Ribbon(客户端负载均衡)、Hystrix(断路器)、Zuul(API网关)和Config Server(配置中心),提供完整服务治理解决方案。通过Eureka实现服务注册与发现,Ribbon进行负载均衡,Hystrix确保服务容错,Config Server集中管理配置,Zuul则作为API入口统一处理请求。理解和使用Spring Cloud是现代Java开发者的关键技能。
165 2
|
6月前
|
负载均衡 Java Nacos
Spring Boot与微服务治理框架的集成策略
Spring Boot与微服务治理框架的集成策略
|
7月前
|
Kubernetes 监控 Cloud Native
云原生架构下的微服务治理实践
【6月更文挑战第23天】在云计算的浪潮中,云原生架构以其弹性、可扩展性和高效性成为企业数字化转型的重要推手。本文将深入探讨如何利用云原生技术实现微服务的治理与优化,确保系统的稳定性和高可用性。我们将从微服务的基本概念出发,通过具体案例分析,揭示云原生环境下微服务治理的关键策略,并分享实践经验,旨在为读者提供一套完整的微服务治理解决方案。
|
7月前
|
运维 负载均衡 Cloud Native
云原生架构下的微服务治理实践
【6月更文挑战第24天】在云原生的浪潮下,微服务治理成为确保系统弹性、可维护性和可观测性的关键。本文通过深入分析微服务治理的核心要素与挑战,结合前沿技术和工具,提出一套实用的微服务治理策略,旨在帮助开发者和架构师构建更加稳定、高效且易于管理的分布式系统。
|
6月前
|
存储 Kubernetes Cloud Native
云原生架构下的微服务治理之道
【7月更文挑战第15天】本文将深入探讨在云原生架构下,如何高效地进行微服务的治理。我们将从微服务治理的基本原则出发,详细分析服务发现、配置管理、容错设计等关键实践,并结合具体案例,展示如何在云平台上构建和管理健壮、可扩展的微服务系统。文章旨在为开发者和架构师提供一套实用的方法论,以应对快速变化的市场需求和技术挑战。
57 0