Google Earth Engine(GEE)——监督分类出现ConfusionMatrix (Error) User memory limit exceeded.解决方案

简介: Google Earth Engine(GEE)——监督分类出现ConfusionMatrix (Error) User memory limit exceeded.解决方案

我正在做监督分类,我得到的错误是’超过了用户内存限制’,但是我的数据已经不是那么复杂了。我把我的inputPropeties导出为一个堆叠的图层,我在一个光栅图层上做分类,我选择了有限的类的数量,但仍然得到这个错误。

我希望得到你的回答。

当我们出现下面的状况应该怎们办?

Resubstitution error matrix:

ConfusionMatrix (Error)

User memory limit exceeded.

Training overall accuracy:

Number (Error)

User memory limit exceeded.

Training kappa accuracy:

Number (Error)

User memory limit exceeded.

Training producer accuracy:

Array (Error)

User memory limit exceeded.

Training Consumer accuracy:

Array (Error)

User memory limit exceeded.

这里我们可以选择一种方案就是降低分辨率:

stratifiedSample(numPoints, classBand, region, scale, projection, seed, classValues, classPoints, dropNulls, tileScale, geometries)

Extracts a stratified random sample of points from an image. Extracts the specified number of samples for each distinct value discovered within the ‘classBand’. Returns a FeatureCollection of 1 Feature per extracted point, with each feature having 1 property per band in the input image. If there are less than the specified number of samples available for a given class value, then all of the points for that class will be included. Requires that the classBand contain integer values.

从图像中提取分层随机样品。 提取“ classband”中发现的每个不同值的指定数量的样本。 返回每个提取点1个特征的特征汇编,每个功能在输入图像中每个频段具有1个属性。 如果给定类值的示例数量少于指定数量的示例,则将包括该类的所有要点。 要求class带包含整数值。

Arguments:

this:image (Image):

The image to sample.

numPoints (Integer):

The default number of points to sample in each class. Can be overridden for specific classes using the ‘classValues’ and ‘classPoints’ properties.

classBand (String, default: null):

The name of the band containing the classes to use for stratification. If unspecified, the first band of the input image is used.

region (Geometry, default: null):

The region to sample from. If unspecified, the input image’s whole footprint is used.

scale (Float, default: null):
A nominal scale in meters of the projection to sample in. Defaults to the scale of the first band of the input image.

修改这个参数:将30转化为100或者更多来调试

projection (Projection, default: null):

The projection in which to sample. If unspecified, the projection of the input image’s first band is used. If specified in addition to scale, rescaled to the specified scale.

seed (Integer, default: 0):

A randomization seed to use for subsampling.

classValues (List, default: null):

A list of class values for which to override the numPoints parameter. Must be the same size as classPoints or null.

classPoints (List, default: null):

A list of the per-class maximum number of pixels to sample for each class in the classValues list. Must be the same size as classValues or null.

dropNulls (Boolean, default: true):

Skip pixels in which any band is masked.

tileScale (Float, default: 1):

A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g. 2 or 4) may enable computations that run out of memory with the default.

geometries (Boolean, default: false):

If true, the results will include a geometry per sampled pixel. Otherwise, geometries will be omitted (saving memory).

Returns: FeatureCollection

var EG_LC = ee.FeatureCollection("projects/ee-samartarek440/assets/EG_LC"),
    ROI = ee.FeatureCollection("projects/ee-samartarek440/assets/Agri2020"),
    EG_LC_tif = ee.Image("projects/ee-samartarek440/assets/EG_LC_tif"),
    Rectangle = 
    /* color: #98ff00 */
    /* shown: false */
    /* locked: true */
    /* displayProperties: [
      {
        "type": "rectangle"
      }
    ] */
    ee.Geometry.Polygon(
        [[[31
相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2381 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
219 0
|
6月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
545 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
6月前
|
API Go 网络架构
GEE Colab——如何从本地/Google云盘/Google Cloud Storage (GCS)上传和下载
GEE Colab——如何从本地/Google云盘/Google Cloud Storage (GCS)上传和下载
317 4
|
6月前
|
机器学习/深度学习 存储 人工智能
GEE Colab——初学者福音快速入门 Google Colab(Colaboratory)
GEE Colab——初学者福音快速入门 Google Colab(Colaboratory)
232 3
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
84 0
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
127 0
|
6月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
76 0
|
6月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
255 0
|
6月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
120 0