一、本文介绍
本文给大家带来的改进机制是轻量化的Neck结构CCFM配合SENetv2改进的网络结构进行融合改进,其中CCFM为我本人根据RT-DETR模型一比一总结出来的,文中配其手撕结构图,其中SENetV2为网络结构重构化模块,通过其改进主干从而提取更有效的特征,这两个模块搭配在一起,一个轻量化,一个进行有效涨点,搭配在一起效果十分良好,如果在你的数据上有涨点的效果,可以在其基础加一个其它机制配合上我的损失函数即可编写论文。
欢迎大家订阅我的专栏一起学习YOLO!
修改完融合机制参数量直接下降百分之三十GLOPs下降两个点,精度还有提升在我的数据集上该机制可以说非常的有效果,同时该机制我提供两个融合版本提供给大家使用,一个精度更高,一个参数量更少!
专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备
二、SENetV2核心代码
2.1 SENetV2的框架原理
SENetV2介绍了一种改进的SENet架构,该架构通过引入一种称为Squeeze aggregated excitation(SaE)的新模块来提升网络的表征能力。这个模块结合了挤压和激励(SENetV1)操作,通过多分支全连接层增强了网络的全局表示学习。在基准数据集上的实验结果证明了SENetV2模型相较于现有模型在分类精度上的显著提升。这一架构尤其强调在仅略微增加模型参数的情况下,如何有效地提高模型的性能。
挤压和激励模块大家可以看我发的SENetV1文章里面有介绍。
图中展示了三种不同的神经网络模块对比:
a) ResNeXt模块:采用多分支CNN结构,不同分支的特征图通过卷积操作处理后合并(concatenate),再进行额外的卷积操作。
b) SENet模块:标准卷积操作后,利用全局平均池化来挤压特征,然后通过两个尺寸为1x1的全连接层(FC)和Sigmoid激活函数来获取通道权重,最后对卷积特征进行缩放(Scale)。
c) SENetV2模块:结合了ResNeXt和SENet的特点,采用多分支全连接层(FC)来挤压和激励操作,最后进行特征缩放。
其中SENetV2的设计旨在通过多分支结构进一步提升特征表达的精细度和全局信息的整合能力。
前面我们提到了SaE,就是SENetV2相对于SENetV1的主要改进机制,下面的图片介绍了其内部工作原理。
SENet V2中所提出的SaE(Squeeze-and-Excitation)模块的内部工作机制。挤压输出后,被输入到多分支的全连接(FC)层,然后进行激励过程。分割的输入在最后被传递以恢复其原始形状。这种设计能够让网络更有效地学习到输入数据的不同特征,并且在进行特征转换时考虑到不同通道之间的相互依赖性。