Springboot整合Elasticsearch 7.X 复杂查询

简介: 这里使用Springboot 2.7.12版本,Elasticsearch为7.15.0。

这里使用Springboot 2.7.12版本,Elasticsearch为7.15.0。


导入依赖

<dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
        </dependency>

 

yaml文件配置:

elasticsearch:
      uris: http://localhost:9200

 

构建实体类,这里为商品的SKU属性表


@Data
@Document(indexName = "skusearch")
public class SkuEs {
    @Id
    private String id;
    @Field(type = FieldType.Text,analyzer = "ik_smart",searchAnalyzer = "ik_smart")
    private String name;
    private Integer price;
    private Integer num;
    private String image;
    private String images;
    private Date createTime;
    private Date updateTime;
    private String spuId;
    private Integer categoryId;
    //Keyword:不分词
    @Field(type= FieldType.Keyword)
    private String categoryName;
    private Integer brandId;
    @Field(type=FieldType.Keyword)
    private String brandName;
    @Field(type=FieldType.Keyword)
    private String skuAttribute;
    private Integer status;
}



构建service层进行复杂查询:指定条件查询,聚合查询,分页查询,排序查询,高亮等等


@Service
public class SkuSearchServiceImpl implements SkuSearchService {
    @Autowired
    ElasticsearchRestTemplate elasticsearchRestTemplate;
    @Override
    public Map<String, Object> search(Map<String, Object> map) {
        if(map!=null&&map.size()>0) {
            NativeSearchQueryBuilder queryBuilder = queryBuilder(map);
            //分组查询
            group(queryBuilder, map);
//            NativeSearchQuery nativeSearchQuery = queryBuilder.build();
            SearchHits<SkuEs> skuEsSearchHits = elasticsearchRestTemplate.search(queryBuilder.build(), SkuEs.class);
            AggregationsContainer<?> aggregations = skuEsSearchHits.getAggregations();
            Aggregations aggregations1 = (Aggregations) aggregations.aggregations();
            Map<String, Object> searchMap = new HashMap<>();
            //解析分组数据
            parseGroup(aggregations1, searchMap);
            //遍历返回的内容进行处理
            List<SearchHit<SkuEs>> searchHits = skuEsSearchHits.getSearchHits();
            //将高亮的内容填充到content中
            List<SkuEs> skuEsList = searchHits.stream().map(i -> {
                Map<String, List<String>> highlightFields = i.getHighlightFields();
                List<String> name = highlightFields.get("name");
                i.getContent().setName(name==null?i.getContent().getName():name.get(0));
                return i.getContent();
            }).collect(Collectors.toList());
            //数据元素
            searchMap.put("list", skuEsList);
            //数据元素总数
            searchMap.put("totalElements", skuEsList.size());
            return searchMap;
        }
        return null;
    }
    public NativeSearchQueryBuilder queryBuilder(Map<String, Object> searchMap){
        NativeSearchQueryBuilder queryBuilder=new NativeSearchQueryBuilder();
        BoolQueryBuilder boolQueryBuilder=new BoolQueryBuilder();
        if(searchMap!=null&&searchMap.size()>0){
            //根据产品关键词进行查询
            String keyword = searchMap.get("keyword").toString();
            if(!StringUtils.isEmpty(keyword))
                boolQueryBuilder.must(QueryBuilders.termQuery("name",keyword));
            //查询指定的品牌
            String brandName=searchMap.get("brand").toString();
            if(!StringUtils.isEmpty(brandName)){
                boolQueryBuilder.must(QueryBuilders.termQuery("brandName",brandName));
            }
            //根据价格进行查询,形式为gteprice-lteprice
            String price = searchMap.get("price").toString();
            if(!StringUtils.isEmpty(price)){
                String[] split = price.split("-");
                boolQueryBuilder.must(QueryBuilders.rangeQuery("price").gte(split[0]));
                if(split.length>1)
                    boolQueryBuilder.must(QueryBuilders.rangeQuery("price").lte(split[1]));
            }
        }
        //根据价格,对于查询出来的产品进行降序排列
        queryBuilder.withSort(SortBuilders.fieldSort("price").order(SortOrder.DESC));
        //分页查询
        queryBuilder.withPageable(PageRequest.of(Integer.parseInt(searchMap.get("current").toString()),Integer.parseInt(searchMap.get("size").toString())));
        queryBuilder.withQuery(boolQueryBuilder);
        //高亮设置
        queryBuilder.withHighlightFields(new HighlightBuilder.Field("name"));
        queryBuilder.withHighlightBuilder(new HighlightBuilder().preTags("<em>").postTags("</em>"));
        return queryBuilder;
    }
    public void group(NativeSearchQueryBuilder queryBuilder,Map<String, Object> searchMap){
        //用户如果没有输入分类条件,则需要将分类搜索出来,作为条件提供给用户
        if(StringUtils.isEmpty(searchMap.get("category"))){
            queryBuilder.withAggregations(AggregationBuilders.terms("categoryList").
                    field("categoryName").size(100));
        }
        //用户如果没有输入品牌条件,则需要将品牌搜索出来,作为条件提供给用户
        if(StringUtils.isEmpty(searchMap.get("brand"))){
            queryBuilder.withAggregations(AggregationBuilders.terms("brandList")
                    .field("brandName").size(100));
        }
    }
    //解析分组数据
    public void parseGroup(Aggregations aggregations, Map<String,Object> resultMap){
        if(aggregations!=null){
            for (Aggregation aggregation : aggregations) {
                ParsedStringTerms terms = (ParsedStringTerms) aggregation;
                String name = terms.getName();
                List<String> collect = terms.getBuckets().stream().map(i -> i.getKeyAsString()).collect(Collectors.toList());
                resultMap.put(name,collect);
            }
        }
    }
}



接口测试:



查询如下:


{
  "data": {
  "categoryList": [
    "软件研发"
  ],
  "brandList": [
    "华为"
  ],
  "list": [
    {
    "id": "1318594982227025922",
    "name": "<em>华为</em>Mate40 Pro 32G",
    "price": 114,
    "num": 1228,
    "image": "https://sklll.oss-cn-beijing.aliyuncs.com/secby/af1faf56-b10a-4700-9896-3143a2d1c40f.jpg",
    "images": "https://sklll.oss-cn-beijing.aliyuncs.com/secby/a65bfbe4-21b7-42b2-b5cf-47a9730e0a16.jpg,https://sklll.oss-cn-beijing.aliyuncs.com/secby/fa52ef66-7724-4d6e-bece-15eba0f8f903.jpg,https://sklll.oss-cn-beijing.aliyuncs.com/secby/734f0f17-ac73-45d3-a6bf-83e1569ce887.jpg",
    "createTime": "2020-10-20T08:48:37.000+00:00",
    "updateTime": "2023-12-30T07:41:20.000+00:00",
    "spuId": "1318594982147334146",
    "categoryId": 11159,
    "categoryName": "软件研发",
    "brandId": 11,
    "brandName": "华为",
    "skuAttribute": "{\"就业薪资\":\"10K起\",\"学习费用\":\"2万\"}",
    "status": 1,
    "attrMap": null
    },
    {
    "id": "1318596430360813570",
    "name": "<em>华为</em>Mate40 Pro 32G 1800万像素",
    "price": 112,
    "num": 1227,
    "image": "https://sklll.oss-cn-beijing.aliyuncs.com/secby/9247d041-e940-426c-8e50-06084b631063.jpg",
    "images": "https://sklll.oss-cn-beijing.aliyuncs.com/secby/5f5b7435-6cf2-4797-8f65-d4abff181390.jpg",
    "createTime": "2020-10-20T08:54:22.000+00:00",
    "updateTime": "2023-12-30T07:41:21.000+00:00",
    "spuId": "1318596430293704706",
    "categoryId": 11159,
    "categoryName": "软件研发",
    "brandId": 11,
    "brandName": "华为",
    "skuAttribute": "{\"就业薪资\":\"10K起\",\"学习费用\":\"2万\"}",
    "status": 1,
    "attrMap": null
    },
    {
    "id": "1318596430398562305",
    "name": "<em>华为</em>Mate40 Pro 128G",
    "price": 111,
    "num": 1226,
    "image": "https://sklll.oss-cn-beijing.aliyuncs.com/secby/900a3618-9884-4778-bad9-c6c31eaf3eab.jpg",
    "images": "https://sklll.oss-cn-beijing.aliyuncs.com/secby/5f5b7435-6cf2-4797-8f65-d4abff181390.jpg",
    "createTime": "2020-10-20T08:54:22.000+00:00",
    "updateTime": "2023-12-30T07:41:24.000+00:00",
    "spuId": "1318596430293704706",
    "categoryId": 11159,
    "categoryName": "软件研发",
    "brandId": 11,
    "brandName": "华为",
    "skuAttribute": "{\"就业薪资\":\"10K起\",\"学习费用\":\"2万\"}",
    "status": 1,
    "attrMap": null
    }
  ],
  "totalElements": 3
  },
  "code": 20000,
  "message": "操作成功"
}


相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。 &nbsp;
相关文章
存储 JSON Java
633 0
|
7月前
|
SQL Java 数据库
解决Java Spring Boot应用中MyBatis-Plus查询问题的策略。
保持技能更新是侦探的重要素质。定期回顾最佳实践和新技术。比如,定期查看MyBatis-Plus的更新和社区的最佳做法,这样才能不断提升查询效率和性能。
309 1
|
10月前
|
数据采集 JSON 数据挖掘
Elasticsearch 的DSL查询,聚合查询与多维度数据统计
Elasticsearch的DSL查询与聚合查询提供了强大的数据检索和统计分析能力。通过合理构建DSL查询,用户可以高效地搜索数据,并使用聚合查询对数据进行多维度统计分析。在实际应用中,灵活运用这些工具不仅能提高查询效率,还能为数据分析提供深入洞察。理解并掌握这些技术,将显著提升在大数据场景中的分析和处理能力。
548 20
|
前端开发 Java API
SpringBoot整合Flowable【06】- 查询历史数据
本文介绍了Flowable工作流引擎中历史数据的查询与管理。首先回顾了流程变量的应用场景及其局限性,引出表单在灵活定制流程中的重要性。接着详细讲解了如何通过Flowable的历史服务API查询用户的历史绩效数据,包括启动流程、执行任务和查询历史记录的具体步骤,并展示了如何将查询结果封装为更易理解的对象返回。最后总结了Flowable提供的丰富API及其灵活性,为后续学习驳回功能做了铺垫。
1046 0
SpringBoot整合Flowable【06】- 查询历史数据
|
SQL 前端开发 关系型数据库
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
409 9
|
JSON Java API
springboot集成ElasticSearch使用completion实现补全功能
springboot集成ElasticSearch使用completion实现补全功能
251 1
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
895 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
JSON Java 网络架构
elasticsearch学习四:使用springboot整合 rest 进行搭建elasticsearch服务
这篇文章介绍了如何使用Spring Boot整合REST方式来搭建和操作Elasticsearch服务。
416 4
elasticsearch学习四:使用springboot整合 rest 进行搭建elasticsearch服务
|
8月前
|
JSON 安全 数据可视化
Elasticsearch(es)在Windows系统上的安装与部署(含Kibana)
Kibana 是 Elastic Stack(原 ELK Stack)中的核心数据可视化工具,主要与 Elasticsearch 配合使用,提供强大的数据探索、分析和展示功能。elasticsearch安装在windows上一般是zip文件,解压到对应目录。文件,elasticsearch8.x以上版本是自动开启安全认证的。kibana安装在windows上一般是zip文件,解压到对应目录。elasticsearch的默认端口是9200,访问。默认用户是elastic,密码需要重置。
4322 0
|
9月前
|
安全 Java Linux
Linux安装Elasticsearch详细教程
Linux安装Elasticsearch详细教程
1753 64