【Python进阶必备】一文掌握re库:实战正则表达式

简介: 【Python进阶必备】一文掌握re库:实战正则表达式

亲爱的读者,你是否在编程过程中遇到过字符串处理难题?是否对繁琐复杂的文本匹配操作感到困扰?今天,我们就一起深入探索Python世界中的强大工具——re模块,它是Python标准库中用于处理正则表达式的利器,帮你轻松驾驭各类字符串处理任务。

re库初识

Python的re模块提供了完整的正则表达式功能。正则表达式(Regular Expression)是一种强大的文本模式匹配工具,它能高效地进行查找、替换、分割等复杂字符串操作。

在Python中,通过 import re 即可引入这一神器。


re库基础使用方法

compile()函数

首先,我们需要使用re.compile()函数将正则表达式编译为Pattern对象

基本用法

import re
# 匹配一个或多个连续的数字字符
pattern = re.compile(r'\d+') 
# 匹配email电邮地址
email_pattern = re.compile(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', re.IGNORECASE)
# 匹配任意字母数字组成的用户名(至少1个字符)
username_pattern = re.compile(r'\w+')
# 匹配任意URL链接
url_pattern = re.compile(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+')
# 匹配电话号码(格式如:123-456-7890 或 (123) 456-7890)
phone_pattern = re.compile(r'(\d{3}[-\.\s]??\d{3}[-\.\s]??\d{4}|\(\d{3}\)\s*\d{3}[-\.\s]??\d{4})')
# 匹配IPv4地址
ipv4_pattern = re.compile(r'(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)')
# 匹配信用卡号(一般为16位数字,可能包含空格分隔符)
credit_card_pattern = re.compile(r'\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}')
# 匹配日期格式(YYYY-MM-DD)
date_pattern = re.compile(r'\d{4}-\d{2}-\d{2}')
# 匹配颜色代码(如 #FF0000)
color_code_pattern = re.compile(r'^#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})$')
# 匹配整数和小数(包括负数、正数和零)
number_pattern = re.compile(r'-?\d+(\.\d+)?')

正则表达式常用规则字符

  • \d:在大多数正则表达式语法中(包括Python中的 re 模块),\d 相当于 [0-9],即它会匹配任意一个十进制数字字符,相当于阿拉伯数字从0到9。
  • +:这是一个量词,表示前面的元素(这里是\d)至少出现一次或多次。因此,\d+ 作为一个整体,它会匹配一个或连续的一个以上数字字符,例如 "123"、"456789" 等等。
  • \w:匹配字母(大写或小写)、数字和下划线(等价于 [a-zA-Z0-9_])。
  • \s:匹配任何空白字符,包括空格、制表符、换行符等。
  • . (句点):匹配除换行符之外的任何单个字符。
  • ^:在字符串起始位置时匹配,或者在字符类 [] 中表示反向选择(如 [^abc] 匹配非 a、b、c 的字符)。
  • $:在字符串结束位置时匹配。
  • *:零次或多次匹配前面的元素。
  • ?:零次或一次匹配前面的元素。
  • {m,n}:前面的元素至少出现 m 次,至多出现 n 次。
  • |:表示“或”操作,用于匹配多个选项之一。
  • ():用于分组和捕获子匹配项。

re.compile(pattern, flags=0) 的作用是:

  1. 预编译:将正则表达式转换为编译过的模式对象,提高后续匹配操作的速度。
  2. 复用:创建一次编译好的模式后,可以在程序的不同地方重复使用该模式进行匹配、查找、替换等操作。
  3. 支持标志:可以传递标志参数来改变正则表达式的默认行为,如忽略大小写、多行模式等。

match与search方法

pattern.match()方法只检测字符串开始位置是否满足匹配条件;而pattern.search()方法会搜索整个字符串以找到第一个匹配项。

match

import re
text = "2023-01-01 This is a date at the start of the string."
# 使用match()方法,只从字符串开始位置匹配日期格式
pattern = re.compile(r'\d{4}-\d{2}-\d{2}')
match_result = pattern.match(text)
if match_result:
    print(f"Match found: {match_result.group(0)}")
else:
    print("No match at the beginning of the string.")
# 输出:
# Match found: 2023-01-01
import re
text = "The date today is 2023-01-01, let's remember it."
# 使用search()方法在整个字符串中搜索日期格式
pattern = re.compile(r'\d{4}-\d{2}-\d{2}')
search_result = pattern.search(text)
if search_result:
    print(f"Search found: {search_result.group(0)}")
else:
    print("No match found in the string.")
# 输出:
# Search found: 2023-01-01

match/search

import re
text = "This sentence does not start with a date like 2023-01-01."
# match()不会找到任何匹配项,因为日期不在字符串开头
match_result = re.match(r'\d{4}-\d{2}-\d{2}', text)
if match_result:
    print("Match found.")
else:
    print("No match at the beginning using match().")
# search()能找到匹配项,因为它搜索整个字符串
search_result = re.search(r'\d{4}-\d{2}-\d{2}', text)
if search_result:
    print("Search found.")
else:
    print("No match found anywhere using search().")
# 输出:
# No match at the beginning using match().
# Search found.

findall与finditer方法

pattern.findall()返回所有非重叠匹配结果的列表;pattern.finditer()返回一个迭代器,逐个返回Match对象。

使用findall()返回所有匹配项

import re
text = "The3 quick5 brown5 fox3 jumps5 over4 the3 lazy4 dog."
# 找到文本中所有的"fox"
pattern = re.compile(r'\d+')
matches = pattern.findall(text)
print(matches)
# 输出: ['3', '5', '5', '3', '5', '4', '3', '4']

使用findall()提取多个组的匹配

import re
text = "John Doe, Jane Smith, Alice Johnson"
# 提取所有名字和姓氏
pattern = re.compile(r'(\w+) (\w+)')
matches = pattern.findall(text)
print(matches)
# 输出: [('John', 'Doe'), ('Jane', 'Smith'), ('Alice', 'Johnson')]
# 返回的是元组组成的列表,每个元组代表一个匹配的结果,其中包含了括号分组的内容

使用finditer()逐个返回Match对象

import re
text = "I have 3 apples and 7 bananas in 2 baskets."
# 查找所有数字
pattern = re.compile(r'\d+')
for match in pattern.finditer(text):
    print(match.group(0))
# 输出:
# 3
# 7
# 2
# finditer()方法逐个返回Match对象,并可以通过group()方法获取匹配的具体内容

使用finditer()并处理复杂匹配结构

import re
text = "colors: red, colors:blue; shapes: square, shapes:circle"
# 匹配颜色或形状
pattern = re.compile(r'(?:colors?[:\s]+(\w+)(?:[,;\s]|$))|(?:shapes?[:\s]+(\w+)(?:[,;\s]|$))')
for match in pattern.finditer(text):
    if match.group(1):  # 如果是颜色
        print(f"Color found: {match.group(1)}")
    elif match.group(2):  # 如果是形状
        print(f"Shape found: {match.group(2)}")
# 输出:
# Color found: red
# Color found: blue
# Shape found: square
# Shape found: circle

进阶用法

分组与反向引用

通过圆括号可以创建子组,以便捕获和引用部分匹配内容。如re.compile(r'(\w+) (\d+)')\1\2分别代表第一个和第二个子组的内容。

替换文本中的部分内容

import re
text = "John Doe has 3 apples and Jane Smith has 7 bananas."
pattern = re.compile(r'(\w+) (\d+)')
new_text = pattern.sub(r'\1 has \2 fruits', text)
print(new_text)
# 输出: "John Doe has 3 fruits and Jane Smith has 7 fruits."
# 在这个例子中,\1 替换为第一个子组(名字),\2 替换为第二个子组(数字)

提取并重组子组

import re
text = "The date is 2023-01-01, and the time is 15:30:45."
pattern = re.compile(r'(\d{4})-(\d{2})-(\d{2})')
match = pattern.search(text)
if match:
    date_reformatted = f"{match.group(1)}.{match.group(2)}.{match.group(3)}"
    print(date_reformatted)
    # 输出: "2023.01.01"
    # 这里直接通过group()方法获取每个子组的内容,并重新组合

在搜索结果中使用子组

import re
text = "Some emails are user1@exam.com, user2@apple.net, and user3@example.org."
pattern = re.compile(r'([\w.%+-]+)@([\w.-]+)\.([a-z]{2,})')
matches = pattern.findall(text)
for email in matches:
    username, domain, dtype = email[0], email[1], email[2]
    print(f"Username: {username}, Domain: {domain}.{dtype}")
    # 使用子组匹配的邮箱用户名和域名
    # 输出:
    # Username: user1, Domain: exam.com
    # Username: user2, Domain: apple.net
    # Username: user3, Domain: example.org

贪婪与懒惰匹配

*+?后添加?可变为非贪婪模式,尽可能少地匹配字符。

贪婪与非贪婪的 * 量词

import re
text = "I love Python programming and Java programming very much!"
# 贪婪模式
pattern_greedy = re.compile(r'love.*programming')
match_greedy = pattern_greedy.search(text)
print(match_greedy.group(0))  # 输出: 'love Python programming and Java programming'
# 非贪婪模式
pattern_lazy = re.compile(r'love.*?programming')
match_lazy = pattern_lazy.search(text)
print(match_lazy.group(0))  # 输出: 'love Python programming'

贪婪与非贪婪的 + 量词

import re
text = "The numbers are 139-626 and 123456."
# 贪婪模式
pattern_greedy = re.compile(r'\d+')
matches_greedy = pattern_greedy.findall(text)
print(matches_greedy)
# 输出: ['139', '626', '123456']
# 非贪婪模式
pattern_lazy = re.compile(r'\d+?')
matches_lazy = pattern_lazy.findall(text)
print(matches_lazy)
# 输出: ['1', '3', '9', '6', '2', '6', '1', '2', '3', '4', '5', '6']

贪婪与非贪婪的 ? 量词

import re
text = "Optional text or not?"
# 贪婪模式
pattern_greedy = re.compile(r'(Optional)?.*')
match_greedy = pattern_greedy.search(text)
print(match_greedy.group(0))  # 输出: 'Optional text or not?'
# 非贪婪模式
pattern_lazy = re.compile(r'(Optional)?.*?')
match_lazy = pattern_lazy.search(text)
print(match_lazy.group(0))  # 输出: 'Optional'

预定义字符集与特殊字符

\d\D\w\W\s\S分别代表数字、非数字、单词字符、非单词字符、空白符、非空白符。


结语与讨论

正则表达式和re库的强大远不止于此,其深度和灵活性足以应对各种复杂的文本处理场景。然而,掌握好这门艺术需要不断的实践和积累,本文只是带你踏入了Python re库的门槛,但正则表达式的奥秘还等待着你进一步挖掘。实践中如果遇到“明明规则写得对,为何匹配不上?”这类疑问,不妨回看本文,或是在留言区留下你的问题,我们一同探讨解惑,让正则表达式真正成为你手中的“文本魔法棒”。

目录
相关文章
|
7天前
|
Python
在Python中,可以使用内置的`re`模块来处理正则表达式
在Python中,可以使用内置的`re`模块来处理正则表达式
19 5
|
8天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
10天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
29 4
|
9天前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
18 1
|
10天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
25 1
|
12天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
5天前
|
数据采集 存储 数据处理
探索Python中的异步编程:从基础到实战
【10月更文挑战第39天】在编程世界中,时间就是效率的代名词。Python的异步编程特性,如同给程序穿上了一双翅膀,让它们在执行任务时飞得更高、更快。本文将带你领略Python异步编程的魅力,从理解其背后的原理到掌握实际应用的技巧,我们不仅会讨论理论基础,还会通过实际代码示例,展示如何利用这些知识来提升你的程序性能。准备好让你的Python代码“起飞”了吗?让我们开始这场异步编程的旅程!
14 0
|
9天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
C++ Python
137 python高级 - 正则表达式(re模块的高级用法)
137 python高级 - 正则表达式(re模块的高级用法)
82 0
|
Python
131 python高级 - 正则表达式(re模块操作)
131 python高级 - 正则表达式(re模块操作)
69 0