Python 教程之 Pandas(11)—— 索引和选择 series 的数据

简介: Python 教程之 Pandas(11)—— 索引和选择 series 的数据

这篇文章我们简单介绍一下索引和选择 series 的数据

索引和选择 series 的数据

pandas 中的索引意味着只需从系列中选择特定数据。索引可能意味着选择所有数据,其中一些数据来自特定列。索引也可以称为子集选择

使用索引运算符索引系列[]

索引运算符用于引用对象后面的方括号。和索引器.loc.iloc使用索引运算符进行选择。在这个索引运算符中要引用 df[ ]。

# importing pandas module  
import pandas as pd  
# 制作数据框
df = pd.read_csv("nba.csv")  
ser = pd.Series(df['Name']) 
data = ser.head(10)
data

image.png

现在我们使用索引运算符 [ ] 访问系列的元素。

# 使用索引运算符
data[3:6]

输出:

image.png


索引 series 使用.loc[ ]

此函数通过引用显式索引来选择数据。df.loc索引器以不同于索引运算符的方式选择数据。它可以选择数据子集。

# importing pandas module  
import pandas as pd  
# 制作数据框  
df = pd.read_csv("nba.csv")  
ser = pd.Series(df['Name']) 
data = ser.head(10)
data

image.png

现在我们使用.loc[]函数访问系列的元素。

# 使用 .loc[] 函数
data.loc[3:6]

输出:

image.png

索引 series 使用.iloc[ ]

此功能允许我们按位置检索数据。为此,我们需要指定所需数据的位置。索引器df.iloc 非常相似,df.loc 但仅使用整数位置进行选择。

# importing pandas module  
import pandas as pd  
# 制作数据框  
df = pd.read_csv("nba.csv")  
ser = pd.Series(df['Name']) 
data = ser.head(10)
data

image.png

现在我们使用.iloc[]函数访问 Series 的元素。

# 使用 .iloc[] 函数
data.iloc[3:6]

输出 :

image.png

本篇文章到此就结束了,相关文章:


目录
相关文章
|
4月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
378 0
|
4月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
573 0
|
9月前
|
数据采集 安全 数据挖掘
Pandas数据合并:10种高效连接技巧与常见问题
在数据分析中,数据合并是常见且关键的步骤。本文针对合并来自多个来源的数据集时可能遇到的问题,如列丢失、重复记录等,提供系统解决方案。基于对超1000个复杂数据集的分析经验,总结了10种关键技术,涵盖Pandas库中`merge`和`join`函数的使用方法。内容包括基本合并、左连接、右连接、外连接、基于索引连接、多键合并、数据拼接、交叉连接、后缀管理和合并验证等场景。通过实际案例与技术原理解析,帮助用户高效准确地完成数据整合任务,提升数据分析效率。
892 13
Pandas数据合并:10种高效连接技巧与常见问题
|
6月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
526 0
|
7月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
208 4
|
存储 安全 API
【Python 基础教程 21】Python3 文件操作全面指南:从入门到精通的综合教程
【Python 基础教程 21】Python3 文件操作全面指南:从入门到精通的综合教程
464 0
|
数据可视化 IDE 开发工具
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
1077 13
|
监控 数据可视化 搜索推荐
【Python篇】matplotlib超详细教程-由入门到精通(下篇)2
【Python篇】matplotlib超详细教程-由入门到精通(下篇)
319 9
|
数据可视化 API 数据处理
【Python篇】matplotlib超详细教程-由入门到精通(上篇)
【Python篇】matplotlib超详细教程-由入门到精通(上篇)
1216 5
|
数据可视化 IDE Linux
【Python篇】PyQt5 超详细教程——由入门到精通(序篇)
【Python篇】PyQt5 超详细教程——由入门到精通(序篇)
2963 3

热门文章

最新文章

推荐镜像

更多