【Hello AI】安装并使用Deepnccl-多GPU互联的AI通信加速库

简介: Deepnccl是为阿里云神龙异构产品开发的用于多GPU互联的AI通信加速库,能够无感地加速基于NCCL通信算子调用的分布式训练或多卡推理等任务。本文主要介绍在Ubuntu或CentOS操作系统的GPU实例上安装和使用Deepnccl的操作方法。

Deepnccl是为阿里云神龙异构产品开发的用于多GPU互联的AI通信加速库,能够无感地加速基于NCCL通信算子调用的分布式训练或多卡推理等任务。本文主要介绍在Ubuntu或CentOS操作系统的GPU实例上安装和使用Deepnccl的操作方法。

前提条件

已创建阿里云GPU实例,且GPU实例的操作系统为Ubuntu或CentOS。

安装Deepnccl

根据GPU实例的不同操作系统,安装Deepnccl有所不同,具体操作如下所示:

说明安装Deepnccl时,系统会自动同时安装aiacc-nccl-plugin,确保了Deepnccl的正常使用。

  • Ubuntu操作系统
  1. 执行以下命令,下载Deepnccl的.deb安装包。

本步骤以下载Deepnccl 2.0.1版本为例。

wget https://aiacc.oss-accelerate.aliyuncs.com/nccl/deb/deep-nccl-2.0.1.deb
  1. 执行以下命令,安装Deepnccl。
dpkg -i deep-nccl-2.0.1.deb
  1. 执行以下命令,查看Deepnccl是否安装成功。
ldconfig -p | grep nccl

如果回显结果中如下图所示,显示libnccl.so表示Deepnccl已安装成功。

  • CentOS操作系统
  1. 执行以下命令,下载Deepnccl的.rpm安装包。

本步骤以下载Deepnccl 2.0.1版本为例。

wget https://aiacc.oss-accelerate.aliyuncs.com/nccl/rpm/deep-nccl-2.0.1.rpm
  1. 执行以下命令,安装Deepnccl。
rpm -i deep-nccl-2.0.1.rpm
  1. 执行以下命令,查看Deepnccl是否安装成功。
ldconfig -p | grep nccl

如果回显结果中如下图所示,显示libnccl.so表示Deepnccl已安装成功。

使用Deepnccl

Deepnccl(包括aiacc-nccl-plugin)安装成功后,您可以直接使用Deepnccl的通信优化功能,无需再进行其他配置。

好啦!小弹的分享到此为止。我们更欢迎您分享您对阿里云产品的设想、对功能的建议或者各种吐槽,请扫描提交问卷并获得社区积分或精美礼品一份。https://survey.aliyun.com/apps/zhiliao/P4y44bm_8

【扫码填写上方调研问卷】

欢迎每位来到弹性计算的开发者们来反馈问题哦~

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
4月前
|
人工智能 搜索推荐 Ubuntu
[AI Perplexica] 安装指南:轻松部署AI驱动的开源搜索引擎
详细讲解如何在本地环境中使用Docker部署AI驱动的开源搜索引擎Perplexica,让您快速上手体验其强大功能。
[AI Perplexica] 安装指南:轻松部署AI驱动的开源搜索引擎
|
1月前
|
人工智能 Ubuntu Linux
安装阿里图文融合AI - AnyText心路历程(安装失败告终,心痛!)
安装阿里图文融合AI - AnyText心路历程(安装失败告终,心痛!)
|
2月前
|
存储 机器学习/深度学习 并行计算
GPU通信互联技术:GPUDirect、NVLink与RDMA
在高性能计算和深度学习领域,GPU已成为关键工具。然而,随着模型复杂度和数据量的增加,单个GPU难以满足需求,多GPU甚至多服务器协同工作成为常态。本文探讨了三种主要的GPU通信互联技术:GPUDirect、NVLink和RDMA。GPUDirect通过绕过CPU实现GPU与设备直接通信;NVLink提供高速点对点连接和支持内存共享;RDMA则在网络层面实现直接内存访问,降低延迟。这些技术各有优势,适用于不同场景,为AI和高性能计算提供了强大支持。
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
【Deepin 20深度探索】一键解锁Linux深度学习潜能:从零开始安装Pytorch,驾驭AI未来从Deepin出发!
【8月更文挑战第2天】随着人工智能的迅猛发展,深度学习框架Pytorch已成为科研与工业界的必备工具。Deepin 20作为优秀的国产Linux发行版,凭借其流畅的用户体验和丰富的软件生态,为深度学习爱好者提供理想开发平台。本文引导您在Deepin 20上安装Pytorch,享受Linux下的深度学习之旅。
86 12
|
3月前
|
并行计算 TensorFlow 算法框架/工具
Windows11+CUDA12.0+RTX4090如何配置安装Tensorflow2-GPU环境?
本文介绍了如何在Windows 11操作系统上,配合CUDA 12.0和RTX4090显卡,通过创建conda环境、安装特定版本的CUDA、cuDNN和TensorFlow 2.10来配置TensorFlow GPU环境,并提供了解决可能遇到的cudnn库文件找不到错误的具体步骤。
370 3
|
3月前
|
并行计算 TensorFlow 算法框架/工具
Window安装TensorFlow-GPU版本
Window安装TensorFlow-GPU版本
59 0
|
3月前
|
人工智能 物联网 异构计算
AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用
AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用
216 0
|
4月前
|
人工智能
AI绘画,Stable Diffusion如何使用中文简体包,黑色页面切换参数http://127.0.0.1:7860/?__theme=dark 两个__,中文包下载和安装
AI绘画,Stable Diffusion如何使用中文简体包,黑色页面切换参数http://127.0.0.1:7860/?__theme=dark 两个__,中文包下载和安装
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
27 1

相关产品

  • GPU云服务器