【Hello AI】安装并使用Deepnccl-多GPU互联的AI通信加速库

简介: Deepnccl是为阿里云神龙异构产品开发的用于多GPU互联的AI通信加速库,能够无感地加速基于NCCL通信算子调用的分布式训练或多卡推理等任务。本文主要介绍在Ubuntu或CentOS操作系统的GPU实例上安装和使用Deepnccl的操作方法。

Deepnccl是为阿里云神龙异构产品开发的用于多GPU互联的AI通信加速库,能够无感地加速基于NCCL通信算子调用的分布式训练或多卡推理等任务。本文主要介绍在Ubuntu或CentOS操作系统的GPU实例上安装和使用Deepnccl的操作方法。

前提条件

已创建阿里云GPU实例,且GPU实例的操作系统为Ubuntu或CentOS。

安装Deepnccl

根据GPU实例的不同操作系统,安装Deepnccl有所不同,具体操作如下所示:

说明安装Deepnccl时,系统会自动同时安装aiacc-nccl-plugin,确保了Deepnccl的正常使用。

  • Ubuntu操作系统
  1. 执行以下命令,下载Deepnccl的.deb安装包。

本步骤以下载Deepnccl 2.0.1版本为例。

wget https://aiacc.oss-accelerate.aliyuncs.com/nccl/deb/deep-nccl-2.0.1.deb
  1. 执行以下命令,安装Deepnccl。
dpkg -i deep-nccl-2.0.1.deb
  1. 执行以下命令,查看Deepnccl是否安装成功。
ldconfig -p | grep nccl

如果回显结果中如下图所示,显示libnccl.so表示Deepnccl已安装成功。

  • CentOS操作系统
  1. 执行以下命令,下载Deepnccl的.rpm安装包。

本步骤以下载Deepnccl 2.0.1版本为例。

wget https://aiacc.oss-accelerate.aliyuncs.com/nccl/rpm/deep-nccl-2.0.1.rpm
  1. 执行以下命令,安装Deepnccl。
rpm -i deep-nccl-2.0.1.rpm
  1. 执行以下命令,查看Deepnccl是否安装成功。
ldconfig -p | grep nccl

如果回显结果中如下图所示,显示libnccl.so表示Deepnccl已安装成功。

使用Deepnccl

Deepnccl(包括aiacc-nccl-plugin)安装成功后,您可以直接使用Deepnccl的通信优化功能,无需再进行其他配置。

好啦!小弹的分享到此为止。我们更欢迎您分享您对阿里云产品的设想、对功能的建议或者各种吐槽,请扫描提交问卷并获得社区积分或精美礼品一份。https://survey.aliyun.com/apps/zhiliao/P4y44bm_8

【扫码填写上方调研问卷】

欢迎每位来到弹性计算的开发者们来反馈问题哦~

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
14天前
|
人工智能 Java API
ChatClient:探索与AI模型通信的Fluent API
【11月更文挑战第22天】随着人工智能(AI)技术的飞速发展,越来越多的应用场景开始融入AI技术以提升用户体验和系统效率。在Java开发中,与AI模型通信成为了一个重要而常见的需求。为了满足这一需求,Spring AI引入了ChatClient,一个提供流畅API(Fluent API)的客户端,用于与各种AI模型进行通信。本文将深入探讨ChatClient的底层原理、业务场景、概念、功能点,并通过Java代码示例展示如何使用Fluent API与AI模型进行通信。
41 8
|
1月前
|
人工智能 运维 Serverless
Serverless GPU:助力 AI 推理加速
近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
|
28天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
|
2月前
|
人工智能 调度 开发工具
xGPU来啦!免费GPU资源开发花样AI应用!
为了降低AI应用服务和推广的门槛,解决开发者面临的实际痛点,ModelScope社区推出 xGPU 服务,让大家能够免费使用高性能 GPU 资源,托管自己的AI应用服务。
|
2月前
|
人工智能 供应链 安全
BSI 第七届万物互联智慧高峰论坛:主题:拥抱AI时代,标准赋能组织实现可持续发展
BSI 第七届万物互联智慧高峰论坛:主题:拥抱AI时代,标准赋能组织实现可持续发展
44 0
|
3月前
|
存储 机器学习/深度学习 并行计算
GPU通信互联技术:GPUDirect、NVLink与RDMA
在高性能计算和深度学习领域,GPU已成为关键工具。然而,随着模型复杂度和数据量的增加,单个GPU难以满足需求,多GPU甚至多服务器协同工作成为常态。本文探讨了三种主要的GPU通信互联技术:GPUDirect、NVLink和RDMA。GPUDirect通过绕过CPU实现GPU与设备直接通信;NVLink提供高速点对点连接和支持内存共享;RDMA则在网络层面实现直接内存访问,降低延迟。这些技术各有优势,适用于不同场景,为AI和高性能计算提供了强大支持。
|
4月前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多样化的选择,包括CPU+GPU、CPU+FPGA等多种配置,适用于人工智能、机器学习和深度学习等计算密集型任务。其中,GPU服务器整合高性能CPU平台,单实例可实现最高5PFLOPS的混合精度计算能力。根据不同GPU类型(如NVIDIA A10、V100、T4等)和应用场景(如AI训练、推理、科学计算等),价格从数百到数千元不等。详情及更多实例规格可见阿里云官方页面。
267 1
|
4月前
|
机器学习/深度学习 人工智能 数据可视化
10个用于可解释AI的Python库
10个用于可解释AI的Python库
|
11天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。

相关产品

  • GPU云服务器