【滑动窗口】【差分数组】C++算法:K 连续位的最小翻转次数

简介: 【滑动窗口】【差分数组】C++算法:K 连续位的最小翻转次数

差分数组

LeetCode995: K 连续位的最小翻转次数

给定一个二进制数组 nums 和一个整数 k 。

k位翻转 就是从 nums 中选择一个长度为 k 的 子数组 ,同时把子数组中的每一个 0 都改成 1 ,把子数组中的每一个 1 都改成 0 。

返回数组中不存在 0 所需的最小 k位翻转 次数。如果不可能,则返回 -1 。

子数组 是数组的 连续 部分。

示例 1:

输入:nums = [0,1,0], K = 1

输出:2

解释:先翻转 A[0],然后翻转 A[2]。

示例 2:

输入:nums = [1,1,0], K = 2

输出:-1

解释:无论我们怎样翻转大小为 2 的子数组,我们都不能使数组变为 [1,1,1]。

示例 3:

输入:nums = [0,0,0,1,0,1,1,0], K = 3

输出:3

解释:

翻转 A[0],A[1],A[2]: A变成 [1,1,1,1,0,1,1,0]

翻转 A[4],A[5],A[6]: A变成 [1,1,1,1,1,0,0,0]

翻转 A[5],A[6],A[7]: A变成 [1,1,1,1,1,1,1,1]

参数范围

1 <= nums.length <= 105

1 <= k <= nums.length

滑动窗口+差分数组

时间复杂度 O(n)。

如果nums中不存在0,则直接返回0。

令nums[i1]等于0,如果有多个符合的i1,取最小值。设某次翻转[i,i+k),则i的最小值一定为i1。且一定只翻转一次。

翻转奇数次和翻转一次的效果完全一样,所以不需要翻转1以外的奇数次。

翻转偶数次,和没翻转效果一样。所以没必要翻转偶数次。

i < i1 翻转一次后nums[i]变成0,不符合题意
i>i1 nums[i1]为0,不符合题意

翻转i1后,类似原理处理nums[i1+1…],直到处理完毕。

差分数组

翻转[i,i+len)不需要修改nums[i,i+k)的值,那样的时间复杂度是O(k)。修改vDiff[i]++,vDiff[i+len]-- 就可以了。

i的翻转次数就是vDiff[0,i]之和。差分数组单个修改的时间复杂为O(1)。

只能翻转k次,不能翻转k-1次

即i+len <= n 。最后的k-1个元素无法翻转。

代码

核心代码

class Solution {
public:
  int minKBitFlips(vector<int>& nums, int k) {
    m_c = nums.size();
    vector<int> vDiff(m_c+1);
    int iRet = 0;
    int iDiff = 0;
    int i = 0;
    for (; i+k-1 < m_c; i++)
    {
      iDiff += vDiff[i];
      int n = (nums[i] + iDiff) % 2;
      if (0 == n)
      {
        iRet++;
        iDiff++;
        vDiff[i + k]--;
      }
    }
    for (; i  < m_c; i++)
    {
      iDiff += vDiff[i];
      int n = (nums[i] + iDiff) % 2;
      if (0 == n)
      {
        return -1;
      }
    }
    return iRet;
  }
  int m_c;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{
  vector<int> nums = { 1, 2, 1, 2, 3 };
  int k = 2;
  {
    Solution sln;
    nums = { 0,1,0 }, k = 1;
    auto res = sln.minKBitFlips(nums, k);
    Assert(2, res);
  }
  {
    Solution sln;
    nums = { 1,1,0 }, k = 2;
    auto res = sln.minKBitFlips(nums, k);
    Assert(-1, res);
  }
  {
    Solution sln;
    nums = { 0,0,0,1,0,1,1,0 }, k = 3;
    auto res = sln.minKBitFlips(nums, k);
    Assert(3, res);
  }
}

2023年3月版

class Solution {
public:
int minKBitFlips(vector& nums, int k) {
m_c = nums.size();
//差分数组
vector v(m_c);
int iVTotal = 0;
int iRet = 0;
for (int i = 0; i < m_c; i++)
{
iVTotal += v[i];
const int iCur = (nums[i] + iVTotal)%2 ;
if (0 == iCur)
{
if (i + k > m_c)
{
return -1;
}
v[i]++;
if (i + k != m_c)
{
v[i + k]–;
}
iVTotal++;
iRet++;
}
}
return iRet;
}
int m_c;
};

2023年7月版

class Solution {
public:
int minKBitFlips(vector& nums, int k) {
m_c = nums.size();
vector vDiff(m_c + 1);
int iRotaNum = 0;
int iRota = 0;
for (int i = 0; i < m_c; i++)
{
iRota += vDiff[i];
const int iCur = (0 == iRota % 2) ? nums[i] : (1 - nums[i]);
if (1 == iCur )
{
continue;
}
const int iEnd = i + k;
if (iEnd > m_c)
{
return -1;
}
iRotaNum++;
iRota++;
vDiff[i]++;
vDiff[iEnd]++;
}
return iRotaNum;
}
int m_c;
};


扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 C++17

如无特殊说明,本算法C++ 实现。

相关文章
|
11天前
|
存储 算法
算法入门:专题二---滑动窗口(长度最小的子数组)类型题目攻克!
给定一个正整数数组和目标值target,找出总和大于等于target的最短连续子数组长度。利用滑动窗口(双指针)优化,维护窗口内元素和,通过单调性避免重复枚举,时间复杂度O(n)。当窗口和满足条件时收缩左边界,更新最小长度,最终返回结果。
|
6月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
137 2
|
7月前
|
机器学习/深度学习 监控 算法
员工上网行为监控软件中基于滑动窗口的C#流量统计算法解析​
在数字化办公环境中,员工上网行为监控软件需要高效处理海量网络请求数据,同时实时识别异常行为(如高频访问非工作网站)。传统的时间序列统计方法因计算复杂度过高,难以满足低延迟需求。本文将介绍一种基于滑动窗口的C#统计算法,通过动态时间窗口管理,实现高效的行为模式分析与流量计数。
178 2
|
4月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
112 0
|
6月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
167 17
|
5月前
|
机器学习/深度学习 存储 算法
基于 C++ 布隆过滤器算法的局域网上网行为控制:URL 访问过滤的高效实现研究
本文探讨了一种基于布隆过滤器的局域网上网行为控制方法,旨在解决传统黑白名单机制在处理海量URL数据时存储与查询效率低的问题。通过C++实现URL访问过滤功能,实验表明该方法可将内存占用降至传统方案的八分之一,查询速度提升约40%,假阳性率可控。研究为优化企业网络管理提供了新思路,并提出结合机器学习、改进哈希函数及分布式协同等未来优化方向。
113 0
|
5月前
|
存储 机器学习/深度学习 监控
公司电脑上网监控中滑动窗口算法的理论构建与工程实现
本文提出一种基于滑动窗口算法的实时网络流量监控框架,旨在强化企业信息安全防护体系。系统采用分层架构设计,包含数据采集、处理与分析决策三大模块,通过 Java 实现核心功能。利用滑动窗口技术动态分析流量模式,结合阈值检测与机器学习模型识别异常行为。实验表明,该方案在保证高检测准确率的同时支持大规模并发处理,为企业数字化转型提供可靠保障。
112 0
|
7月前
|
存储 机器学习/深度学习 监控
如何监控员工的电脑——基于滑动时间窗口的Java事件聚合算法实现探析​
在企业管理场景中,如何监控员工的电脑操作行为是一个涉及效率与合规性的重要课题。传统方法依赖日志采集或屏幕截图,但数据量庞大且实时性不足。本文提出一种基于滑动时间窗口的事件聚合算法,通过Java语言实现高效、低资源占用的监控逻辑,为如何监控员工的电脑提供一种轻量化解决方案。
155 3
|
18天前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
79 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
148 3
下一篇
开通oss服务