【C语言】【数据结构】自定义类型:结构体

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 这是一篇对结构体的详细介绍,这篇文章对结构体声明、结构体的自引用、结构体的初始化、结构体的内存分布和对齐规则、库函数offsetof、以及进行内存对齐的原因、如何修改默认对齐数、结构体传参进行介绍和说明。

结构体的声明

 

结构体的基础

结构是一些值的集合,这些值被称为成员变量。结构的每个成员可以是不同类型的变量。

在一个变量中,要存放性别、年龄、成绩、地址多种类型的数据时,C语言允许用户自己建立由不同类型数据组成的组合型的数据结构,它称为结构体。

   

结构的声明

结构体是怎么声明的呢?

struct tag
{
    member_list;
}variable_list;  //分号不能丢
struct Student
{
  //学生的相关信息
  char name[20];
  int age;
}s1,s2;
  • tag,Student是结构体名
  • member_list是成员表列
  • struct是声明结构体类型是必须使用的关键字,不能省略
  • s1,s2变量就是学生变量。
  • { }后面要记得把“ ;”带上

struct tag就是一个结构体类型,我们可以根据自己的需要建立结构体类型,struct Teacher,struct Student等结构体类型,各自包含不同的成员。

如果将s1,s2放在main函数的外面,那么s1,s2就是全局变量。

struct Student
{
  //学生的相关信息
  char name[20];
  int age;
}s1,s2;
int main()
{
    return 0;
}

匿名结构体类型

结构体在声明的时候省略了结构体标签(tag),没有名字的结构体类型只能使用一次,被称为匿名结构体类型

由于没有名字,编译器会把下面的两个代码当成完全不同的两个类型。

所以,p = &x.

会因为类型不同报错。

struct
{
  char name[20];
  int age;
}s1;
struct
{
  char name[20];
  int age;
}a[20],*p;

结构体的自引用

结构体的自引用用到数据结构中的链表。

数据结构中有顺序表、链表的概念,

顺序表

数据在内存中是顺序排放的,可以逐个根据地址找到下一个数据。

链表

数据在内存中的存放是没有规律的但是存放数据,会分为两个部分,

一个部分叫数据域,存放有效数据,

另一个部分叫指针域,用来存放下一个数据的地址,可以通过地址直接找到下一个数据。

我们通过链表就可以实现结构体的自引用。

struct Node
{
  int data;
  struct Node* next;
};

typedef作用于结构体的问题

下面在结构体自引用使用的改成中,夹杂了typedef对匿名结构体类型重命名,看看下面的代码,有没有问题?

typedef struct Node
{
  int data;
  Node* next;
}Node;

答案是不行的,因为Node是对前面的匿名结构体类型的重命名产生的,但是在匿名结构体内部提前使用Node类型来创建成员变量,这是不行的。

typedef struct Node
{
  int data;
  struct Node* next;
}Node;

结构体变量的定义和初始化

struct Point是结构体类型,它相当于一个模型,是没有占据具体空间的,

当我们建立结构体变量p1,它相当于具体的房屋,在内存中储存数据。

struct Point
{
  int x;
  int y;
}p1 = { 2,3 };

多个元素的初始化要用大括号{ }

在结构体中,如果存在多个元素的变量,我们初始化时要使用大括号。

像数组一样,arr[] = { 0, 1, 2, 3, 4 };

  • 打印结构体,s1是struct Stu的变量,name是s1的成员变量,用s1.name表示s1结构体的name变量
  • s是struct Stu中的成员变量,用s1.s.n表示在结构体struct score的成员变量n。
struct score
{
  int n;
  char ch;
};
struct Stu
{
  char name[20];
  int age;
  struct score s;
};
int main()
{
  struct Stu s1 = { "zhangsan",20,{100,'q' } };
  printf("%s %d %d %c\n", s1.name, s1.age, s1.s.n, s1.s.ch);
  return 0;
}

结构体的内存对齐

如何计算结构体的大小?

结构体的内存分布是怎样的?

1.对齐规则

首先掌握结构体的对齐规则

1. 结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处

2. 其他成员变量要对⻬到某个数字(对⻬数)的整数倍的地址处。

对⻬数 = 编译器默认的⼀个对⻬数 与 该成员变量⼤⼩的较⼩值。

- VS 中默认的值为 8

- Linux中 gcc 没有默认对⻬数,对⻬数就是成员⾃⾝的⼤⼩

3. 结构体总⼤⼩最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的整数倍。

4. 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。

只是文字的说明,免不了晦涩难懂,接下来用例子来给大家讲解

1.例子

#include <stdoi.h>
struct S1
{
  char c1;
  int i;
  char c2;
};
int main()
{
  printf("%d\n", sizeof(struct S1));
  return 0;
}

解析:

右边表示的是偏移量,

1.第一个成员char c1要对齐到和结构体变量起始位置偏移量为0的地址处,占一个字节

2.其他成员要对齐到对齐数的整数倍的地址处

对⻬数 = 编译器默认的⼀个对⻬数 与 该成员变量⼤⼩的较⼩值。

VS中的默认对齐数是8.

 int i的大小是4个字节,对齐数就是4。int i 的地址要对齐到为偏移量整数倍的地址,也就是4的整数倍,偏移量为4的地址。int i 是4个字节,那占据的地址偏移量为4~7

char c2 的大小是1个字节,对齐数是1。1可以为任意偏移量的整数倍。所以char c2的地址的偏移量就是8.

3.结构体的大小为最大对齐数(结构体中每个成员变量都有一个对齐数,所有对齐数中最大的)的整数倍

成员变量有char c1,int i ,char c2。它们的对齐数分别是1,4,1。因此最大对齐数为4。

结构体总大小为最大对齐数的整数倍,现在偏移量是0~8,一共是9个字节,要凑成4的整数倍,就是12个字节,在浪费3个字节就可以了,地址偏移量9~11一共是3个字节。

这个结构体的内存就储存在偏移量为0~11的空间。

2.例子

#include<stdio.h>
struct S2
{
  char c1;
  char c2;
  int i;
};
int main()
{
  printf("%d\n",sizeof(struct S2));
  return 0;
}

解析: 

右边表示的是偏移量,

1.第一个成员char c1要对齐到和结构体变量起始位置偏移量为0的地址处,占一个字节

2.其他成员要对齐到对齐数的整数倍的地址处

对⻬数 = 编译器默认的⼀个对⻬数 与 该成员变量⼤⼩的较⼩值。

VS中的默认对齐数是8.

char c1  的大小是1个字节,对齐数就是1。char c1的地址要对齐到为偏移量整数倍的地址,也就是1的整数倍,偏移量为1的地址。

int i 的大小是4个字节,对齐数是4。int i 的地址就要移到偏移量为4的倍数的地址。所以int i 的地址的偏移量就是4.int i 是4个字节,那占据的地址偏移量为4~7

3.结构体的大小为最大对齐数(结构体中每个成员变量都有一个对齐数,所有对齐数中最大的)的整数倍

成员变量有char c1,int i ,char c2。它们的对齐数分别是1,4,1。因此最大对齐数为4。

结构体总大小为最大对齐数的整数倍,现在偏移量是0~7,刚好是8个字节,是4的倍数。

这个结构体的内存就储存在偏移量为0~7的空间。


3.例子

#include<stdio.h>
struct S3
{
  double d;
  char c;
  int i;
};
int main()
{
  printf("%d\n",sizeof(struct S3));
  return 0;
}

解析: 

1.第一个成员要对齐到结构体变量起始位置偏移量为0的地址处,double d占8个字节,所以占据的内存空间是偏移量为0~7的地址

2.其他成员要对齐到对齐数的整数倍的地址处

char c的大小是1个字节,任意偏移量都可以为1的整数倍,所以char c的地址是下一位,偏移量为8的地址。

int i 的大小是4个字节,要对齐到偏移量为4的倍数的地址,也就是偏移量为12,int i 占据的内存空间为偏移量为12~15的地址。

3.结构体的大小为最大对齐数的整数倍。

最大对齐数是double的对齐数,也就是8。现在的结构体占16个字节(偏移量为0~15),刚好是8的倍数。


4.例子

这个例子包括了嵌套结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。

#include<stdio.h>
struct S3
{
  double d;
  char c;
  int i;
};
struct S4
{
  char c1;
  struct S3 s3;
  double d;
};
int main()
{
  printf("%d\n",sizeof(struct S4));
  return 0;
}

解析:

1.第一个成员要对齐到结构体变量起始位置偏移量为0的地址处,char c1占1个字节,占据偏移量为0的空间。

2.嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。

接下来是struct s3,要对齐自己成员的最大对齐数,double d的对齐数为8个字节,对齐到偏移量为8的地址,

3.其他成员要对齐到对齐数的整数倍的地址处,嵌套的结构体成员也是这样,double d占据8个字节,占据偏移量为8~15的地址。

char c对齐偏移量16,占据一个字节。

int i 的对齐数为4,对齐偏移量为20,占据4个字节,就是偏移量为20~23的空间。

struct S3整理完,继续到struct S4,轮到double d

double d的对齐数为8,对齐偏移量24,占据8个字节,占据空间偏移量为24~31。

4.结构体的大小为最大对齐数的整数倍。

当前空间一共是32个字节(0~31),结构体struct S4,struct S3中的成员的最大对齐数是8。因此结构体的大小要是最大对齐数的整数倍。32刚好是8的整数倍。

offsetof

返回成员的偏移量 ,头文件<stddef.h>

offsetof (type,member)

offsetof的使用

type是类型,

#include <stdio.h>
#include <stddef.h>
struct S1
{
  char c1;
  int i;
  char c2;
};
int main()
{
  printf("%d\n", offsetof(struct S1, c1));
  printf("%d\n", offsetof(struct S1, i));
  printf("%d\n", offsetof(struct S1, c2));
  return 0;
}


为什么要存在内存对齐


1. 平台原因 (移植原因):

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2. 性能原因:

数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要 作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以 ⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两 个8字节内存块中。

总体来说:结构体的内存对⻬是拿空间来换取时间的做法。

以32为机器为例,32位机器一次可以访问32位比特位的数据,

如果没有对齐规则,就像左边,机器要访问两次才可以得到 int i 的值,

有对齐规则,就像右边,想要访问 i ,只需要访问一次就足够了。

对齐规则的思想:把数据放在机器可以一次访问得到数据的空间内,使访问更具效率。  


修改默认对齐数

当结构体的对齐方式不适合时,我们也可以修改默认对齐数。

  • 在括号填写数字,对默认对齐数进行修改。
  • 如果()内没有数字,则时将默认对齐数恢复到默认值。
#pragma pack()

下面的struct S原本是占据12个字节的空间,对默认对齐数进行修改后,只占据6个字节的空间。

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{
  char c1;
  int i;
  char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{
  //输出的结果是什么?
  printf("%d\n", sizeof(struct S));
  return 0;
}


结构体传参

  • 传值调用,将数据通过参数传过去,然后函数print会创立独立的空间,对传过来的数据进行存储
  • 传址调用,将数据的地址传过去,函数通过指向数据的地址对数据进行使用,不需要再建立空间对数据进行存放
#include<stdio.h>
struct S
{
  int data[1000];
  int num;
};
void print1(struct S ss)
{
  int i = 0;
  for (i = 0; i < 3; i++)
  {
    printf("%d ", ss.data[i]);
  }
  printf("%d\n", ss.num);
}
void print2(struct S* ps)
{
  int i = 0;
  for (i = 0; i < 3; i++)
  {
    printf("%d ", ps->data[i]);
  }
  printf("%d\n", ps->num);
}
int main()
{
  struct S s = { {1,2,3},100 };
  print1(s);
  print2(&s);
  return 0;
}

上面的传值调用print1 和 传址调用print2 函数那哪个更好?


答案是:⾸选print2函数。

原因:

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。

如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较⼤,所以会导致性能的下降。


目录
相关文章
|
3天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
47 9
|
17天前
|
存储 算法 C语言
通义灵码在考研C语言和数据结构中的应用实践 1-5
通义灵码在考研C语言和数据结构中的应用实践,体验通义灵码的强大思路。《趣学C语言和数据结构100例》精选了五个经典问题及其解决方案,包括求最大公约数和最小公倍数、统计字符类型、求特殊数列和、计算阶乘和双阶乘、以及求斐波那契数列的前20项和。通过这些实例,帮助读者掌握C语言的基本语法和常用算法,提升编程能力。
|
2天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
33 16
|
2天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
28 8
|
5天前
|
存储 C语言
【数据结构】手把手教你单链表(c语言)(附源码)
本文介绍了单链表的基本概念、结构定义及其实现方法。单链表是一种内存地址不连续但逻辑顺序连续的数据结构,每个节点包含数据域和指针域。文章详细讲解了单链表的常见操作,如头插、尾插、头删、尾删、查找、指定位置插入和删除等,并提供了完整的C语言代码示例。通过学习单链表,可以更好地理解数据结构的底层逻辑,提高编程能力。
27 4
|
11天前
|
存储 C语言
如何在 C 语言中实现结构体的深拷贝
在C语言中实现结构体的深拷贝,需要手动分配内存并逐个复制成员变量,确保新结构体与原结构体完全独立,避免浅拷贝导致的数据共享问题。具体方法包括使用 `malloc` 分配内存和 `memcpy` 或手动赋值。
23 10
|
6天前
|
存储 C语言
【数据结构】顺序表(c语言实现)(附源码)
本文介绍了线性表和顺序表的基本概念及其实现。线性表是一种有限序列,常见的线性表有顺序表、链表、栈、队列等。顺序表是一种基于连续内存地址存储数据的数据结构,其底层逻辑是数组。文章详细讲解了静态顺序表和动态顺序表的区别,并重点介绍了动态顺序表的实现,包括初始化、销毁、打印、增删查改等操作。最后,文章总结了顺序表的时间复杂度和局限性,并预告了后续关于链表的内容。
25 3
|
6天前
|
存储 算法 C语言
C语言数据结构(2)
【10月更文挑战第21天】
|
10天前
|
安全 编译器 Linux
【c语言】轻松拿捏自定义类型
本文介绍了C语言中的三种自定义类型:结构体、联合体和枚举类型。结构体可以包含多个不同类型的成员,支持自引用和内存对齐。联合体的所有成员共享同一块内存,适用于判断机器的大小端。枚举类型用于列举固定值,增加代码的可读性和安全性。文中详细讲解了每种类型的声明、特点和使用方法,并提供了示例代码。
13 3
|
10天前
|
存储 大数据 编译器
C语言:结构体对齐规则
C语言中,结构体对齐规则是指编译器为了提高数据访问效率,会根据成员变量的类型对结构体中的成员进行内存对齐。通常遵循编译器默认的对齐方式或使用特定的对齐指令来优化结构体布局,以减少内存浪费并提升性能。