Redis 布隆过滤器实战「缓存击穿、雪崩效应」

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Redis 布隆过滤器实战「缓存击穿、雪崩效应」


为什么引入

我们的业务中经常会遇到穿库的问题,通常可以通过缓存解决。 如果数据维度比较多,结果数据集合比较大时,缓存的效果就不明显了。 因此为了解决穿库的问题,我们引入Bloom Filter。

开源项目地址:github.com/luw2007/blo…

我们先看看一般业务缓存流程

先查询缓存,缓存不命中再查询数据库。 然后将查询结果放在缓存中即使数据不存在,也需要创建一个缓存,用来防止穿库。这里需要区分一下数据是否存在。 如果数据不存在,缓存时间可以设置相对较短,防止因为主从同步等问题,导致问题被放大。

这个流程中存在薄弱的问题是,当用户量太大时,我们会缓存大量数据空数据,并且一旦来一波冷用户,会造成雪崩效应。 对于这种情况,我们产生第二个版本流程:redis过滤冷用户缓存流程

我们将数据库里面中命中的用户放在redis的set类型中,设置不过期。 这样相当把redis当作数据库的索引,只要查询redis,就可以知道是否数据存在。 redis中不存在就可以直接返回结果。 如果存在就按照上面提到一般业务缓存流程处理。

聪明的你肯定会想到更多的问题:

  1. redis本身可以做缓存,为什么不直接返回数据呢?
  2. 如果数据量比较大,单个set,会有性能问题?
  3. 业务不重要,将全量数据放在redis中,占用服务器大量内存。投入产出不成比例?

问题1需要区分业务场景,结果数据少,我们是可以直接使用redis作为缓存,直接返回数据。 结果比较大就不太适合用redis存放了。比如ugc内容,一个评论里面可能存在上万字,业务字段多。

redis使用有很多技巧。bigkey 危害比较大,无论是扩容或缩容带来的内存申请释放, 还是查询命令使用不当导致大量数据返回,都会影响redis的稳定。这里就不细谈原因及危害了。 解决bigkey 方法很简单。我们可以使用hash函数来分桶,将数据分散到多个key中。 减少单个key的大小,同时不影响查询效率。

问题3是redis存储占用内存太大。因此我们需要减少内存使用。 重新思考一下引入redis的目的。 redis像一个集合,整个业务就是验证请求的参数是否在集合中。

这个结构就像洗澡的时候用的双向阀门:左边热水,右边冷水。

大部分的编程语言都内置了filter。 拿python举例,filter函数用于过滤序列, 过滤掉不符合条件的元素,返回由符合条件元素组成的列表。

我们看个例子:

$ python2
Python 2.7.10 (default, Oct  6 2017, 22:29:07)
[GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.31)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> s = {2, 4}
>>> filter(lambda x:x in s, [0, 1, 2])
[2]
复制代码

集合s中存在 2,4两个数字,我们需要查询 0,1,2 那些在集合s中。 lambda x:x in s构造一个匿名函数,判断入参x是否在集合s中。 过滤器filter依次对列表中的数字执行匿名函数。最终返回列表[2]

redis中实现set用了两种结构:intset和hash table。 非数字或者大量数字时都会退化成hash table。 那么是否好的算法可以节省hash table的大小呢?

其实早在1970年由Burton Howard Bloom提出的布隆过滤器(英语:Bloom Filter)。 它实际上是一个很长的二进制向量和一系列随机映射函数。 布隆过滤器可以用于检索一个元素是否在一个集合中。 它的优点是空间效率和查询时间都远远超过一般的算法, 缺点是有一定的误识别率和删除困难。

BloomFilter原理

我们常见的将业务字段拼接之后md5,放在一个集合中。 md5生成一个固定长度的128bit的串。 如果我们用bitmap来表示,则需要

2**128 = 340282366920938463463374607431768211456 bit
复制代码

判断一个值在不在,就变成在这个bitmap中判断所在位是否为1。 但是我们全世界的机器存储空间也无法存储下载。 因此我们只能分配有限的空间来存储。 比如:

import crc32
def BloomFilter(sample, size, hash_size=1):
    # 构造一个hash函数,将输入数据散列到size一个位置上
    hash = lambda x:crc32(str(x).encode())%size
    collision, s = 0, set()
    for i in range(sample):
        k = set()
        for j in range(hash_size):
            k.add(hash(i+j*size/hash_size))
        # 只有所有散列结果k都在s中,才认为i重复
        if not k - s:
            collision += 1
            continue
        # 将散列结果k更新到集合s中
        s |= k
    return collision
复制代码

当只有一个hash函数时:很容易发生冲突。

可以看到上面1和2的hash结果都是7,发生冲突。 如果增加hash函数,会发生什么情况?

我们使用更多的hash函数和更大的数据集合来测试。得到下面这张表

由此可以看到当增加hash方法能够有效的降低碰撞机率。 比较好的数据如下:

但是增加了hash方法之后,会降低空间的使用效率。当集合占用总体空间达到25%的时候, 增加hash 的效果已经不明显

上面的使用多个hash方法来降低碰撞就是BloomFilter的核心思想。

适合的场景

  • 数据库防止穿库 Google Bigtable,Apache HBase和Apache Cassandra以及Postgresql 使用BloomFilter来减少不存在的行或列的磁盘查找。避免代价高昂的磁盘查找会大大提高数据库查询操作的性能。 如同一开始的业务场景。如果数据量较大,不方便放在缓存中。需要对请求做拦截防止穿库。
  • 缓存宕机 缓存宕机的场景,使用布隆过滤器会造成一定程度的误判。原因是除了Bloom Filter 本身有误判率,宕机之前的缓存不一定能覆盖到所有DB中的数据,当宕机后用户请求了一个以前从未请求的数据,这个时候就会产生误判。当然,缓存宕机时使用布隆过滤器作为应急的方式,这种情况应该也是可以忍受的。
  • WEB拦截器 相同请求拦截防止被攻击。用户第一次请求,将请求参数放入BloomFilter中,当第二次请求时,先判断请求参数是否被BloomFilter命中。可以提高缓存命中率
  • 恶意地址检测 chrome 浏览器检查是否是恶意地址。 首先针对本地BloomFilter检查任何URL,并且仅当BloomFilter返回肯定结果时才对所执行的URL进行全面检查(并且用户警告,如果它也返回肯定结果)。
  • 比特币加速 bitcoin 使用BloomFilter来加速钱包同步。

算法优点:

  • 数据空间小,不用存储数据本身。

算法本身缺点:

  • 元素可以添加到集合中,但不能被删除。
  • 匹配结果只能是“绝对不在集合中”,并不能保证匹配成功的值已经在集合中。
  • 当集合快满时,即接近预估最大容量时,误报的概率会变大。
  • 数据占用空间放大。一般来说,对于1%的误报概率,每个元素少于10比特,与集合中的元素的大小或数量无关。 - 查询过程变慢,hash函数增多,导致每次匹配过程,需要查找多个位(hash个数)来确认是否存在。

对于BloomFilter的优点来说,缺点都可以忽略。毕竟只需要kN的存储空间就能存储N个元素。空间效率十分优秀。

如何使用BloomFilter

BloomFilter 需要一个大的bitmap来存储。鉴于目前公司现状,最好的存储容器是redis。 从github topics: bloom-filter中经过简单的调研。

redis集成BloomFilter方案:

原生python 方法太慢,lua脚本和module 部署比较麻烦。于是我们推荐使用pyreBloom,底层使用。

pyreBloom:master λ ls
Makefile      bloom.h       bloom.pxd     murmur.c      pyreBloom.pyx
bloom.c       bloom.o       main.c        pyreBloom.c
复制代码

从文件命名上可以看到bloom 使用c编写。pyreBloom 使用cython编写。

bloom.h 里面实现BloomFilter的核心逻辑,完成与redis server的交互;hash函数;添加,检查和删除方法的实现。

int init_pyrebloom(pyrebloomctxt * ctxt, char * key, uint32_t capacity, double error, char* host, uint32_t port, char* password, uint32_t db);
int free_pyrebloom(pyrebloomctxt * ctxt);
int add(pyrebloomctxt * ctxt, const char * data, uint32_t len);
int add_complete(pyrebloomctxt * ctxt, uint32_t count);
int check(pyrebloomctxt * ctxt, const char * data, uint32_t len);
int check_next(pyrebloomctxt * ctxt);
int delete(pyrebloomctxt * ctxt);
复制代码

pyreBloom.pyx

import math
import random
cimport bloom
class pyreBloomException(Exception):
  '''Some sort of exception has happened internally'''
  pass
cdef class pyreBloom(object):
  cdef bloom.pyrebloomctxt context
  cdef bytes               key
  property bits:
    def __get__(self):
      return self.context.bits
  property hashes:
    def __get__(self):
      return self.context.hashes
  def __cinit__(self, key, capacity, error, host='127.0.0.1', port=6379,
    password='', db=0):
    self.key = key
    if bloom.init_pyrebloom(&self.context, self.key, capacity,
      error, host, port, password, db):
      raise pyreBloomException(self.context.ctxt.errstr)
  def __dealloc__(self):
    bloom.free_pyrebloom(&self.context)
  def delete(self):
    bloom.delete(&self.context)
  def put(self, value):
    if getattr(value, '__iter__', False):
      r = [bloom.add(&self.context, v, len(v)) for v in value]
      r = bloom.add_complete(&self.context, len(value))
    else:
      bloom.add(&self.context, value, len(value))
      r = bloom.add_complete(&self.context, 1)
    if r < 0:
      raise pyreBloomException(self.context.ctxt.errstr)
    return r
  def add(self, value):
    return self.put(value)
  def extend(self, values):
    return self.put(values)
  def contains(self, value):
    # If the object is 'iterable'...
    if getattr(value, '__iter__', False):
      r = [bloom.check(&self.context, v, len(v)) for v in value]
      r = [bloom.check_next(&self.context) for i in range(len(value))]
      if (min(r) < 0):
        raise pyreBloomException(self.context.ctxt.errstr)
      return [v for v, included in zip(value, r) if included]
    else:
      bloom.check(&self.context, value, len(value))
      r = bloom.check_next(&self.context)
      if (r < 0):
        raise pyreBloomException(self.context.ctxt.errstr)
      return bool(r)
  def __contains__(self, value):
    return self.contains(value)
  def keys(self):
    '''Return a list of the keys used in this bloom filter'''
    return [self.context.keys[i] for i in range(self.context.num_keys)]
复制代码
原生pyreBloom方法:
cdef class pyreBloom(object):
    cdef bloom.pyrebloomctxt context
    cdef bytes
    property bits:
    property hashes:
    // 使用的hash方法数
    def delete(self):
    // 删除,会在redis中删除
    def put(self, value):
    // 添加 底层方法, 不建议直接调用
    def add(self, value):
    // 添加单个元素,调用put方法
    def extend(self, values):
    // 添加一组元素,调用put方法
    def contains(self, value):
    // 检查是否存在,当`value`可以迭代时,返回`[value]`, 否则返回`bool`
    def keys(self):
    // 在redis中存储的key列表
复制代码

由于pyreBloom使用hiredis库,本身没有重连等逻辑,于是错了简单的封装。

# coding=utf-8
    '''
    bloom filter 基础模块
    可用方法:
    extend, keys, contains, add, put, hashes, bits, delete
    使用方法:
    >>> class TestModel(BaseModel):
    ...    PREFIX = "bf:test"
    >>> t = TestModel()
    >>> t.add('hello')
    1
    >>> t.extend(['hi', 'world'])
    2
    >>> t.contains('hi')
    True
    >>> t.delete()
    '''
    import logging
    from six import PY3 as IS_PY3
    from pyreBloom import pyreBloom, pyreBloomException
    from BloomFilter.utils import force_utf8
    class BaseModel(object):
        '''
        bloom filter 基础模块
        参数:
            SLOT: 可用方法类型
            PREFIX: redis前缀
            BF_SIZE: 存储最大值
            BF_ERROR: 允许的出错率
            RETRIES: 连接重试次数
            host: redis 服务器IP
            port: redis 服务器端口
            db: redis 服务器DB
            _bf_conn: 内部保存`pyreBloom`实例
        '''
        SLOT = {'add', 'contains', 'extend', 'keys', 'put', 'delete',
                'bits', 'hashes'}
        PREFIX = ""
        BF_SIZE = 100000
        BF_ERROR = 0.01
        RETRIES = 2
        def __init__(self, redis=None):
            '''
            初始化redis配置
            :param redis: redis 配置
            '''
            # 这里初始化防止类静态变量多个继承类复用,导致数据被污染
            self._bf_conn = None
            self._conf = {
                'host': '127.0.0.1', 'password': '',
                'port': 6379, 'db': 0
            }
            if redis:
                for k, v in redis.items():
                    if k in self._conf:
                        self._conf[k] = redis[k]
            self._conf = force_utf8(self._conf)
        @property
        def bf_conn(self):
            '''
            初始化pyreBloom
            '''
            if not self._bf_conn:
                prefix = force_utf8(self.PREFIX)
                logging.debug(
                    'pyreBloom connect: redis://%s:%s/%s, (%s %s %s)',
                    self._conf['host'], self._conf['port'], self._conf['db'],
                    prefix, self.BF_SIZE, self.BF_ERROR,
                )
                self._bf_conn = pyreBloom(
                    prefix, self.BF_SIZE, self.BF_ERROR, **self._conf)
            return self._bf_conn
        def __getattr__(self, method):
            '''调用pyrebloom方法
            没有枚举的方法将从`pyreBloom`中获取
            :param method:
            :return: pyreBloom.{method}
            '''
            # 只提供内部方法
            if method not in self.SLOT:
                raise NotImplementedError()
            # 捕获`pyreBloom`的异常, 打印必要的日志
            def catch_error(*a, **kwargs):
                '''多次重试服务'''
                args = force_utf8(a)
                kwargs = force_utf8(kwargs)
                for _ in range(self.RETRIES):
                    try:
                        func = getattr(self.bf_conn, method)
                        res = func(*args, **kwargs)
                        # python3 返回值和python2返回值不相同,
                        # 手工处理返回类型
                        if method == 'contains' and IS_PY3:
                            if isinstance(res, list):
                                return [i.decode('utf8') for i in res]
                        return res
                    except pyreBloomException as error:
                        logging.warn(
                            'pyreBloom Error:  %s %s', method, str(error))
                        self.reconnect()
                        if _ == self.RETRIES:
                            logging.error('pyreBloom Error')
                            raise error
            return catch_error
        def __contains__(self, item):
            '''跳转__contains__方法
            :param item: 查询元素列表/单个元素
            :type item: list/basestring
            :return: [bool...]/bool
            '''
            return self.contains(item)
        def reconnect(self):
            '''
            重新连接bloom
            `pyreBloom` 连接使用c driver,没有提供timeout参数,使用了内置的timeout
            同时为了保证服务的可靠性,增加了多次重试机制。
            struct timeval timeout = { 1, 5000 };
            ctxt->ctxt = redisConnectWithTimeout(host, port, timeout);
            del self._bf_conn 会调用`pyreBloom`内置的C的del方法,会关闭redis连接
            '''
            if self._bf_conn:
                logging.debug('pyreBloom reconnect')
                del self._bf_conn
                self._bf_conn = None
                _ = self.bf_conn
复制代码

进阶:计数过滤器(Counting Filter)

提供了一种在BloomFilter上实现删除操作的方法,而无需重新重新创建过滤器。在计数滤波器中,阵列位置(桶)从单个位扩展为n位计数器。实际上,常规布隆过滤器可以被视为计数过滤器,其桶大小为一位。

插入操作被扩展为递增桶的值,并且查找操作检查每个所需的桶是否为非零。然后,删除操作包括递减每个桶的值。

存储桶的算术溢出是一个问题,并且存储桶应该足够大以使这种情况很少见。如果确实发生,则增量和减量操作必须将存储区设置为最大可能值,以便保留BloomFilter的属性。

计数器的大小通常为3或4位。因此,计算布隆过滤器的空间比静态布隆过滤器多3到4倍。相比之下, Pagh,Pagh和Rao(2005)以及Fan等人的数据结构。(2014)也允许删除但使用比静态BloomFilter更少的空间。

计数过滤器的另一个问题是可扩展性有限。由于无法扩展计数布隆过滤器表,因此必须事先知道要同时存储在过滤器中的最大键数。一旦超过表的设计容量,随着插入更多密钥,误报率将迅速增长。

Bonomi等人。(2006)引入了一种基于d-left散列的数据结构,它在功能上是等效的,但使用的空间大约是计算BloomFilter的一半。此数据结构中不会出现可伸缩性问题。一旦超出设计容量,就可以将密钥重新插入到双倍大小的新哈希表中。

Putze,Sanders和Singler(2007)的节省空间的变体也可用于通过支持插入和删除来实现计数过滤器。

Rottenstreich,Kanizo和Keslassy(2012)引入了一种基于变量增量的新通用方法,该方法显着提高了计算布隆过滤器及其变体的误报概率,同时仍支持删除。与计数布隆过滤器不同,在每个元素插入时,散列计数器以散列变量增量而不是单位增量递增。要查询元素,需要考虑计数器的确切值,而不仅仅是它们的正面性。如果由计数器值表示的总和不能由查询元素的相应变量增量组成,则可以将否定答案返回给查询。

开源项目地址:github.com/luw2007/blo…




目录
相关文章
|
4月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
2月前
|
缓存 数据库连接 数据库
缓存三剑客(穿透、击穿、雪崩)
缓存穿透指查询数据库和缓存中都不存在的数据,导致请求直接冲击数据库。解决方案包括缓存空对象和布隆过滤器。缓存击穿是大量请求访问同一个失效的热点数据,使数据库瞬间压力剧增,解决方法有提前预热、设置永不过期、加锁限流等。缓存雪崩是大量key同时失效,导致所有请求直达数据库,可通过引入随机过期时间缓解。三者分别对应单点爆破、全面崩塌等问题,需根据场景选择合适策略优化系统性能与稳定性。
205 0
|
2月前
|
存储 缓存 NoSQL
如何解决缓存击穿?
缓存击穿是指热点数据失效时大量请求直接冲击数据库,可能导致系统崩溃。解决方案包括:永不过期策略避免缓存失效瞬间的穿透;互斥锁控制并发访问;热点预热提前刷新缓存;熔断降级在数据库压力大时返回默认值;二级缓存降低Redis压力。实际中常组合使用多种方案,如热点预热+互斥锁+熔断降级,以提升系统稳定性与性能。
309 0
|
10天前
|
存储 NoSQL 前端开发
Redis专题-实战篇一-基于Session和Redis实现登录业务
本项目基于SpringBoot实现黑马点评系统,涵盖Session与Redis两种登录方案。通过验证码登录、用户信息存储、拦截器校验等流程,解决集群环境下Session不共享问题,采用Redis替代Session实现数据共享与自动续期,提升系统可扩展性与安全性。
83 3
Redis专题-实战篇一-基于Session和Redis实现登录业务
|
10天前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
73 1
Redis专题-实战篇二-商户查询缓存
|
10天前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。
|
3月前
|
缓存 监控 NoSQL
Redis 实操要点:Java 最新技术栈的实战解析
本文介绍了基于Spring Boot 3、Redis 7和Lettuce客户端的Redis高级应用实践。内容包括:1)现代Java项目集成Redis的配置方法;2)使用Redisson实现分布式可重入锁与公平锁;3)缓存模式解决方案,包括布隆过滤器防穿透和随机过期时间防雪崩;4)Redis数据结构的高级应用,如HyperLogLog统计UV和GeoHash处理地理位置。文章提供了详细的代码示例,涵盖Redis在分布式系统中的核心应用场景,特别适合需要处理高并发、分布式锁等问题的开发场景。
266 40
|
1月前
|
缓存 监控 安全
告别缓存击穿!Go 语言中的防并发神器:singleflight 包深度解析
在高并发场景中,多个请求同时访问同一资源易导致缓存击穿、数据库压力过大。Go 语言提供的 `singleflight` 包可将相同 key 的请求合并,仅执行一次实际操作,其余请求共享结果,有效降低系统负载。本文详解其原理、实现及典型应用场景,并附示例代码,助你掌握高并发优化技巧。
189 0
|
2月前
|
存储 缓存 安全
Go语言实战案例-LRU缓存机制模拟
本文介绍了使用Go语言实现LRU缓存机制的方法。LRU(最近最少使用)是一种常见缓存淘汰策略,当缓存满时,优先删除最近最少使用的数据。实现中使用哈希表和双向链表结合的方式,确保Get和Put操作均在O(1)时间内完成。适用于Web缓存、数据库查询优化等场景。
|
3月前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
1026 7