毕业设计 基于STM32单片机生理监控心率脉搏TFT彩屏波形曲线设计

简介: 毕业设计 基于STM32单片机生理监控心率脉搏TFT彩屏波形曲线设计

0、毕业设计选题原则说明(重点)

  • 选题之前,同学们要弄明白一件事情,做毕业设计是干什么用的!
  • 这里我告诉大家,毕业设计对于你来说,不是让你去搞研究,掌握运用所学知识的,也不是让你去比谁做的毕业设计多么牛逼,多么厉害。
  • 说白点,它的作用就是一个,让你顺利毕业,能够拿到学位证,毕业证而已!!!
  • 当你明白这一点后,作毕业设计的要求就是在满足老师的要求后,越简单越好,这样不但容易去做,而且你自己也容易去理解,掌握,同样也能花最少的钱!!!
  • 满足老师的要求,这个没办法,毕竟他是决定你是否能通过答辩的人。
  • 每年都有很多同学找到我的时候,后悔当初为什么要把功能写的那么复杂,后悔没有提前找我咨询一下!所以在这里提醒同学们,提交开题报告之前一定要多想想,咨询下以往的学长学姐,不要自己随便写一堆提交上去!!!
  • 大家找不到学长学姐的话,也可以找我咨询,我可以给大家一些建议
  • 点击此处即可咨询

1、项目简介

1.1 系统构成

本设计由STM32F103C8T6单片机核心板电路+心率传感器电路+报警电路+按键+TFT彩屏组成。

1.2 系统功能

  • 1、TFT液晶实时显示心率值。
  • 2、TFT液晶实时显示采集到的的模拟信号的曲线图,直接显示心率变化曲线。
  • 3、通过按键可以设置心率报警阈值,按键有设置按键、设置+、设置-,在设置情况下可以对设置值进行加减。
  • 4、当前心率值超过设置阈值,蜂鸣器报警,同时显示心率值为红色;否则蜂鸣器不报警,心率值显示蓝色。

2、部分电路设计

2.1 STM32F103C8T6核心系统电路设计

STM32F103C8T6单片机最小系统电路由复位电路、时钟电路和电源电路。拥有这三部分电路后,单片机即可正常工作。

单片机最小系统原理图如下图所示:

实物图:

2.2心率检测电路设计

心率检测电路由pulsesensor心率传感器与LM393比较器构成,将DO与AO引脚连接到STM32单片机引脚上,进行数据采集。

其具体电路原理图如下图所示:

实物图如下图所示:

2.3 TFT2.4寸彩屏电路设计

TFT(Thin Film Transistor)即薄膜场效应晶体管,属于有源矩阵液晶显示器中的一种。TFT-LCD液晶显示屏是薄膜晶体管型液晶显示屏,也就是“真彩”(TFT)。TFT液晶为每个像素都设有一个半导体开关,每个像素都可以通过点脉冲直接控制,因而每个节点都相对独立,并可以连续控制,不仅提高了显示屏的反应速度,同时可以精确控制显示色阶,所以TFT液晶的色彩更真。TFT液晶显示屏的特点是亮度好、对比度高、层次感强、颜色鲜艳,但也存在着比较耗电和成本较高的不足。TFT液晶技术加快了手机彩屏的发展。彩屏手机中基本上都支持65536色,还有26万.130万显示,有的甚至支持1600万色显示,这时TFT的高对比度,色彩丰富的优势就非常重要了。

其具体电路原理图如下图所示:

实物图如下:

3、部分代码展示

3.1 ADC初始化

由于需要对模拟信号进行处理,所以使用到STM32中的ADC

void  Adc_Init(void)
{   
  ADC_InitTypeDef ADC_InitStructure; 
  GPIO_InitTypeDef GPIO_InitStructure;
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_ADC1  , ENABLE );   //使能ADC1通道时钟
  RCC_ADCCLKConfig(RCC_PCLK2_Div6);   //设置ADC分频因子6 72M/6=12,ADC最大时间不能超过14M
  //PA1 作为模拟通道输入引脚                         
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;   //模拟输入引脚
  GPIO_Init(GPIOA, &GPIO_InitStructure);  
  ADC_DeInit(ADC1);  //复位ADC1,将外设 ADC1 的全部寄存器重设为缺省值
  ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;  //ADC工作模式:ADC1和ADC2工作在独立模式
  ADC_InitStructure.ADC_ScanConvMode = DISABLE; //模数转换工作在单通道模式
  ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //模数转换工作在单次转换模式
  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //转换由软件而不是外部触发启动
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;  //ADC数据右对齐
  ADC_InitStructure.ADC_NbrOfChannel = 1; //顺序进行规则转换的ADC通道的数目
  ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器   
  ADC_Cmd(ADC1, ENABLE);  //使能指定的ADC1
  ADC_ResetCalibration(ADC1); //使能复位校准  
  while(ADC_GetResetCalibrationStatus(ADC1)); //等待复位校准结束
  ADC_StartCalibration(ADC1);  //开启AD校准
  while(ADC_GetCalibrationStatus(ADC1));   //等待校准结束
}   

3.2 获取ADC采样值

u16 GetAdc(u8 ch)   
{
    //设置指定ADC的规则组通道,一个序列,采样时间
  ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_41Cycles5 ); //ADC1,ADC通道,采样时间为239.5周期             
  ADC_SoftwareStartConvCmd(ADC1, ENABLE);   //使能指定的ADC1的软件转换启动功能  
  while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束
  return ADC_GetConversionValue(ADC1);  //返回最近一次ADC1规则组的转换结果
}

3.3 LCD引脚初始化

void LCDInit(void)
{
 GPIO_InitTypeDef  GPIO_InitStructure;
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);   //使能PB,PD端口时钟
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7|GPIO_Pin_8|GPIO_Pin_9|GPIO_Pin_10|GPIO_Pin_13;         //LED0-->PB.8 端口配置
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;      //推挽输出
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;     //IO口速度为50MHz
 GPIO_Init(GPIOB, &GPIO_InitStructure);          //根据设定参数初始化GPIOA.8
}

3.3 在LCD指定位置显示字符串

void LCD_ShowChar(u16 x,u16 y,u8 num,u8 mode)
{
    u8 temp;
    u8 pos,t;
  u16 x0=x;
  u16 colortemp=POINT_COLOR;      
    if(x>LCD_W-16||y>LCD_H-16)return;     
  //设置窗口       
  num=num-' ';//得到偏移后的值
  Address_set(x,y,x+8-1,y+16-1);      //设置光标位置 
  if(!mode) //非叠加方式
  {
    for(pos=0;pos<16;pos++)
    { 
      temp=asc2_1608[(u16)num*16+pos];     //调用1608字体
      for(t=0;t<8;t++)
        {                 
            if(temp&0x01)POINT_COLOR=colortemp;
        else POINT_COLOR=BACK_COLOR;
        LCD_WR_DATA(POINT_COLOR); 
        temp>>=1; 
        x++;
        }
      x=x0;
      y++;
    } 
  }else//叠加方式
  {
    for(pos=0;pos<16;pos++)
    {
        temp=asc2_1608[(u16)num*16+pos];     //调用1608字体
      for(t=0;t<8;t++)
        {                 
            if(temp&0x01)LCD_DrawPoint(x+t,y+pos);//画一个点     
            temp>>=1; 
        }
    }
  }
  POINT_COLOR=colortemp;                
}
相关文章
|
8月前
|
传感器 监控
基于STM32的智能工厂生产线监控系统设计与实现
基于STM32的智能工厂生产线监控系统设计与实现
417 0
|
8月前
|
传感器 编解码 数据处理
毕业设计|基于STM32单片机的水位浑浊度检测设计
毕业设计|基于STM32单片机的水位浑浊度检测设计
908 0
|
3月前
|
存储
【TFT彩屏移植】STM32F4移植1.8寸TFT彩屏简明教程(二)
【TFT彩屏移植】STM32F4移植1.8寸TFT彩屏简明教程(二)
114 0
|
3月前
|
存储 芯片
【TFT彩屏移植】STM32F4移植1.8寸TFT彩屏简明教程(一)
【TFT彩屏移植】STM32F4移植1.8寸TFT彩屏简明教程(一·)
171 0
|
3月前
|
传感器 监控 JavaScript
千套单片机\stm32毕设课设题目及资料案列-干货分享
为帮助电子工程领域的学习者顺利毕业或掌握更多专业知识,我们精心整理了一系列单片机和STM32相关的题目及资料案例。这些资源覆盖了从毕业设计到课程设计的各个方面,包括但不限于智能小车、温度控制系统、无线通信、智能家居等多个领域。每项设计都配有详细的原理图、仿真图以及完整的文档资料,旨在帮助学生深入理解理论知识的同时,提高实际动手操作能力。无论是初学者还是有一定基础的学生,都能从中找到适合自己的项目进行实践探索。
466 8
|
3月前
|
传感器 监控 物联网
基于STM32+微波雷达设计的非接触式睡眠监控系统
本项目开发一种非接触式的睡眠监控系统,该系统利用先进的60GHz毫米波雷达技术和STM32微控制器,实现了对人体在睡眠过程中的存在感知、运动感知以及生理指标如呼吸频率、心率的实时监测。系统能够自动评估睡眠质量,并在用户睡眠周期结束时提供睡眠评分。为了确保用户能够在任何地点了解自己的睡眠状况,系统集成了Wi-Fi模块,可以将收集到的数据上传至华为云物联网平台,并通过专门设计的移动应用程序供用户远程访问。此外,系统还具备超阈值报警功能,当检测到异常的生理指标时会发出警报提醒。本地1.44寸TFT LCD显示屏用于实时显示监测到的信息,包括生理指标和环境数据。为了全面监测用户的健康状况,系统还加入了
375 0
基于STM32+微波雷达设计的非接触式睡眠监控系统
|
7月前
|
Web App开发 传感器 Linux
【嵌入式软件工程师面经】STM32单片机
【嵌入式软件工程师面经】STM32单片机
180 1
|
8月前
【STM32】使用单片机DAC产生噪声群
【STM32】使用单片机DAC产生噪声群