Posix API与网络协议栈实现原理

简介: Posix API与网络协议栈实现原理

一、Posix简介

1.1 什么是Posix(Portable Operating System Interface of UNIX )

Posix,意为可移植操作系统接口,它定义了操作系统应该为应用程序提供的接口标准。

1.2 作用

Posix标准旨在期望获得源代码级别的软件可移植性。比如:在linux下写的程序,预期在Windows下也能正常运行。

二、Posix网络API

2.1网络编程客户端和服务端常用API

2.2 客户端和服务端代码示例
2.2.1 服务端server.cpp
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
int main(int argc,char *argv[])
{
  if (argc != 2)
  {
    printf("Using:./server port\nExample:./server 5005\n\n"); return -1;
  }
  // 第1步:创建服务端的socket。
  int listenfd;
  if ( (listenfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) 
  { 
    perror("socket"); 
    return -1; 
  }
  // 第2步:把服务端用于通信的地址和端口绑定到socket上。
  struct sockaddr_in servaddr;    // 服务端地址信息的数据结构。
  memset(&servaddr,0,sizeof(servaddr));
  servaddr.sin_family = AF_INET;  // 协议族,在socket编程中只能是AF_INET。
  servaddr.sin_addr.s_addr = htonl(INADDR_ANY);          // 任意ip地址。
  //servaddr.sin_addr.s_addr = inet_addr("192.168.190.134"); // 指定ip地址。
  servaddr.sin_port = htons(atoi(argv[1]));  // 指定通信端口。
  if (bind(listenfd,(struct sockaddr *)&servaddr,sizeof(servaddr)) != 0 )
  { 
    perror("bind"); 
    close(listenfd); 
    return -1; 
  }
  // 第3步:把socket设置为监听模式。
  if (listen(listenfd,5) != 0 ) 
  { 
    perror("listen"); 
    close(listenfd); 
    return -1; 
  }
  // 第4步:接受客户端的连接。
  int  clientfd;                  // 连上来的客户端socket。
  int  socklen = sizeof(struct sockaddr_in); // struct sockaddr_in的大小
  struct sockaddr_in clientaddr;  // 客户端的地址信息。
  clientfd = accept(listenfd, (struct sockaddr *)&clientaddr, (socklen_t*)&socklen);
  printf("client (%s) connect server success。。。\n", inet_ntoa(clientaddr.sin_addr));
  // 第5步:与客户端通信,接收客户端发过来的报文后,将该报文原封不动返回给客户端。
  char buffer[1024];
  // memset(buffer, 0, 1024);
  while (1)
  {
      int ret;
      memset(buffer, 0, sizeof(buffer));
      // 接收客户端的请求报文。
      if ( (ret = recv(clientfd, buffer, sizeof(buffer), 0)) <= 0) 
      {
         printf("ret = %d , client disconected!!!\n", ret); 
         break;   
      }
      printf("recv msg: %s\n", buffer);
      // 向客户端发送响应结果。
      if ( (ret = send(clientfd, buffer, strlen(buffer), 0)) <= 0) 
      { 
        perror("send"); 
        break; 
      }
      printf("response client: %s success...\n", buffer);
  }
  // 第6步:关闭socket,释放资源。
  close(listenfd); 
  close(clientfd); 
  return 0;
}
2.2.2 客户端client.cpp
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
int main(int argc,char *argv[])
{
  if (argc != 3)
  {
    printf("Using:./client ip port\nExample:./client 127.0.0.1 5005\n\n"); return -1;
  }
  // 第1步:创建客户端的socket。
  int sockfd;
  if ( (sockfd = socket(AF_INET,SOCK_STREAM,0))==-1) 
  { 
    perror("socket"); 
    return -1; 
  }
  // 第2步:向服务器发起连接请求。
  struct hostent* h;
  if ( (h = gethostbyname(argv[1])) == 0 )   // 指定服务端的ip地址。
  { printf("gethostbyname failed.\n"); close(sockfd); return -1; }
  struct sockaddr_in servaddr;
  memset(&servaddr,0,sizeof(servaddr));
  servaddr.sin_family = AF_INET;
  servaddr.sin_port = htons(atoi(argv[2])); // 指定服务端的通信端口。
  memcpy(&servaddr.sin_addr,h->h_addr,h->h_length);
  // 向服务端发起连接清求。
  if (connect(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr)) != 0)  
  { 
    perror("connect"); 
    close(sockfd); 
    return -1; 
  }
  char buffer[1024];
  // 第3步:与服务端通信,发送一个报文后等待回复,然后再发下一个报文。
  for (int i = 0; i < 3; i++)
  {
    int ret;
    memset(buffer, 0, sizeof(buffer));
    sprintf(buffer, "这是第[%d]条消息!", i+1);
    if ( (ret = send(sockfd, buffer, strlen(buffer),0)) <= 0) // 向服务端发送请求报文。
    { 
      perror("send"); 
      break; 
    }
    printf("发送:%s\n", buffer);
    memset(buffer,0,sizeof(buffer));
    if ( (ret = recv(sockfd, buffer, sizeof(buffer), 0)) <= 0) // 接收服务端的回应报文。
    {
      printf("ret = %d error\n", ret); 
      break;
    }
    printf("从服务端接收:%s\n", buffer);
    sleep(1);
  }
  // 第4步:关闭socket,释放资源。
  close(sockfd);
}
运行结果:

2.3 着重分析以下几个函数
2.3.1 socket函数
int socket(int domain, int type, int protocol);

调用socket()函数会创建一个套接字(socket)对象。套接字由两部分组成,文件描述符(fd)和 TCP控制块(Tcp Control Block,tcb) 。Tcb主要包括关系信息有网络的五元组(remote IP,remote Port, local IP, local Port, protocol),一个五元组就可以确定一个具体的网络连接。

2.3.2 listen 函数
listen(int listenfd, backlog);

服务端在调用listen()后,就开始监听网络上连接请求。第二个参数 backlog, 在Linux是指全连接队列的长度,即一次最多能保存 backlog 个连接请求。

2.3.3 connect 函数

客户端调用connect()函数,向指定服务端发起连接请求。

2.3.4 accept 函数
int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

accept()函数只做两件事,将连接请求从全连接队列中取出,给该连接分配一个fd并返回。

2.3.5 三次握手过程分析

三次握手与listen/connect/accept三个函数有关,这里放到一起进行描述。

  1. 客户端调用 connect 函数,开始进入三次握手。客户端发送syn包,以及带着随机的seq;
  2. 服务端listen函数监听到有客户端连接,listen函数会在内核协议栈为该客户端创建一个Tcb控制块,并将其加入到半连接队列。服务端在收到syn包后,会给客户端恢复ack和syn包;
  3. 客户端收到服务端的ack和syn后再次恢复ack,连接建立成功。
  4. 服务端在收到客户端的ack后,会将该客户端对应的Tcb数据从半连接队列移动到全连接队列。只要全连接队列中有数据就会触发accept,返回连接成功的客户端fd、IP以及端口。此时,Tcb完整的五元组构建成功。
2.3.6 常见面试问题
  • 为什么要三次握手?
    答:因为一个完整的TCP连接需要双方都得到确认,客户端发送请求和收到确认需要两次;服务端发送请求和收到确认需要两次,当中服务回复确认和发送请求合并为一次总共需要3次;才能保证双向通道是通的。
  • 一个服务器的端口数是65535,为何能做到一百万的连接?
    答:主要是因为一条连接是由五元组所组成,所以一个服务器的连接数是五个成员数的乘积。
  • 如何应对Dos(Deny of Service,拒绝服务)攻击
    答:Dos攻击就是利用三次握手的原理,模拟客户端只向服务器发送syn包,然后耗尽被攻击对象的资源。比较多的做法是利用防火墙,做一些过滤规则
2.4 send/recv 函数

至此,客户端与服务端已经成功建立连接,就可以相互通信了。

send/recv 函数主要负责数据的收发。

2.4.1 过程分析
  • send函数:负责将数据从用户空间拷贝到内核(具体是拷贝到该连接对应的Tcb控制块中的发送缓冲区)。注意:send函数返回并不意味着数据已成功发送,因为数据在到达内核缓冲区后,内核会根据自己的策略决定什么时候将数据发出。
  • recv函数:负责将数据从内核缓冲区拷贝到用户空间。同理,数据也显示到达该连接对应的Tcb控制块的接受缓冲区。
2.4.2 常见面试问题
  • 如何解决Tcp的粘包问题?
    答:(1) 在包头上添加一个数据包长度的字段,用于数据的划分,实际项目中这个也用的最多;(2)包尾部加固定分隔符;
  • Tcp如何保证顺序到达?
    答:顺序到达是由于TCP的延迟ACK的机制来保证的,TCP接收到数据并不是立即回复而是经过一个延迟时间,回复接收到连续包的最大序列号加1。如果丢包之后的包都需要重传。在弱网情况下这里就会有实时性问题和带宽占用的问题;
2.5 close 函数

在服务器与客户端建立连接之后,会进行一些读写操作,完成读写操作后我们需要关闭相应的socket,好比操作完打开的文件要调用fclose关闭打开的文件一样。close过程涉及到四次挥手的全过程

2.5.1 四次挥手流程:
  1. 客户端调用close函数,内核会发送fin包,客户端进入fin_wait1状态;
  2. 服务端收到fin包回复ack,客户端进入close_wait状态。此时,客户客户端往服务端发送的通道就关闭了,因为Tcp是全双工的,服务端还可以向客户端发数据。
  3. 客户端收到ack,进入到fin_wait2状态;
  4. 服务端发送完数据,发送fin包,服务端进入last_ack状态;
  5. 客户端收到fin包后,回复ack,进入到time_wait状态;
  6. 服务端收到ack,双方连接正常关闭。

注意:close操作只是让相应socket描述字的引用计数-1,只有当引用计数为0的时候,才会触发TCP客户端向服务器发送终止连接请求。

2.5.2 双方同时调用close

2.5.2 常见面试题
  • time_wait 作用?
    答:防止最后一个ACK没有顺利到达对方,超时重新发送ack。time_wait时常一般是120s可以修改。
  • 服务器掉线重启出现端口被占用怎么办?
    答:其实主要是由于还处于time_wait状态,端口并没有真正释放。这时候可以设置SO_REUSEADDR属性,保证掉线能马上重连。

3. Tcp状态机

文章参考于<零声教育>的C/C++linux服务期高级架构

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
9月前
|
网络协议 安全 网络安全
应用程序中的网络协议:原理、应用与挑战
网络协议是应用程序实现流畅运行和安全通信的基石。了解不同协议的特点和应用场景,以及它们面临的挑战和应对策略,对于开发者和用户都具有重要意义。在未来,随着技术的不断发展,网络协议也将不断优化和创新,为数字世界的发展提供更强大的支持。
299 1
|
网络协议 Linux 应用服务中间件
Socket通信之网络协议基本原理
【10月更文挑战第10天】网络协议定义了机器间通信的标准格式,确保信息准确无损地传输。主要分为两种模型:OSI七层模型与TCP/IP模型。
|
网络协议 Linux 应用服务中间件
Socket通信之网络协议基本原理
【9月更文挑战第14天】网络协议是机器间交流的约定格式,确保信息准确传达。主要模型有OSI七层与TCP/IP模型,通过分层简化复杂网络环境。IP地址全局定位设备,MAC地址则在本地网络中定位。网络分层后,数据包层层封装,经由不同层次协议处理,最终通过Socket系统调用在应用层解析和响应。
|
网络协议 网络架构 数据格式
网络原理,网络通信以及网络协议
网络原理,网络通信以及网络协议
193 1
|
网络协议 Linux SDN
虚拟网络设备与Linux网络协议栈
在现代计算环境中,虚拟网络设备在实现灵活的网络配置和隔离方面发挥了至关重要的作用🔧,特别是在容器化和虚拟化技术广泛应用的今天🌐。而Linux网络协议栈则是操作系统处理网络通信的核心💻,它支持广泛的协议和网络服务🌍,确保数据正确地在网络中传输。本文将深入分析虚拟网络设备与Linux网络协议栈的关联,揭示它们如何共同工作以支持复杂的网络需求。
|
存储 网络协议 安全
POSIX API与网络协议栈
POSIX API与网络协议栈
158 0
|
网络协议 Linux API
Posix API与网络协议栈
Posix API与网络协议栈
282 0
|
1月前
|
缓存 监控 前端开发
顺企网 API 开发实战:搜索 / 详情接口从 0 到 1 落地(附 Elasticsearch 优化 + 错误速查)
企业API开发常陷参数、缓存、错误处理三大坑?本指南拆解顺企网双接口全流程,涵盖搜索优化、签名验证、限流应对,附可复用代码与错误速查表,助你2小时高效搞定开发,提升响应速度与稳定性。
|
1月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
2月前
|
数据可视化 测试技术 API
从接口性能到稳定性:这些API调试工具,让你的开发过程事半功倍
在软件开发中,接口调试与测试对接口性能、稳定性、准确性及团队协作至关重要。随着开发节奏加快,传统方式已难满足需求,专业API工具成为首选。本文介绍了Apifox、Postman、YApi、SoapUI、JMeter、Swagger等主流工具,对比其功能与适用场景,并推荐Apifox作为集成度高、支持中文、可视化强的一体化解决方案,助力提升API开发与测试效率。