B树——磁盘链式存储数据结构

简介: B树——磁盘链式存储数据结构

B树详解

我们知道,内存的读写速度是远远高于磁盘的读写速度。磁盘的IO成本是极高的,所以,应尽量减少磁盘的访问次数。同样量级的数据,用二叉树和B树(多叉树)存储,树的高度是不同的。树的高度决定了访问磁盘的次数。

B树的性质

一颗M阶B树T,满足以下条件

  1. 每个结点至多拥有M颗子树
  2. 根结点至少拥有两颗子树
  3. 除了根结点以外,其余每个分支结点至少拥有M/2课子树
  4. 所有的叶结点都在同一层上
  5. 有k课子树的分支结点则存在k-1个关键字,关键字按照递增顺序进行排序
  6. 关键字数量满足ceil(M/2)-1 <= n <= M-1

B树添加节点(分裂)

void btree_split_child(btree *T, btree_node *x, int i) {
  int t = T->t;
  btree_node *y = x->childrens[i];
  btree_node *z = btree_create_node(t, y->leaf);
  z->num = t - 1;
  int j = 0;
  for (j = 0;j < t-1;j ++) {
    z->keys[j] = y->keys[j+t];
  }
  if (y->leaf == 0) {
    for (j = 0;j < t;j ++) {
      z->childrens[j] = y->childrens[j+t];
    }
  }
  y->num = t - 1;
  for (j = x->num;j >= i+1;j --) {
    x->childrens[j+1] = x->childrens[j];
  }
  x->childrens[i+1] = z;
  for (j = x->num-1;j >= i;j --) {
    x->keys[j+1] = x->keys[j];
  }
  x->keys[i] = y->keys[t-1];
  x->num += 1;
}
void btree_insert_nonfull(btree *T, btree_node *x, KEY_VALUE k) {
  int i = x->num - 1;
  if (x->leaf == 1) {
    while (i >= 0 && x->keys[i] > k) {
      x->keys[i+1] = x->keys[i];
      i --;
    }
    x->keys[i+1] = k;
    x->num += 1;
  } else {
    while (i >= 0 && x->keys[i] > k) i --;
    if (x->childrens[i+1]->num == (2*(T->t))-1) {
      btree_split_child(T, x, i+1);
      if (k > x->keys[i+1]) i++;
    }
    btree_insert_nonfull(T, x->childrens[i+1], k);
  }
}
void btree_insert(btree *T, KEY_VALUE key) {
  //int t = T->t;
  btree_node *r = T->root;
  if (r->num == 2 * T->t - 1) {
    btree_node *node = btree_create_node(T->t, 0);
    T->root = node;
    node->childrens[0] = r;
    btree_split_child(T, node, 0);
    int i = 0;
    if (node->keys[0] < key) i++;
    btree_insert_nonfull(T, node->childrens[i], key);
  } else {
    btree_insert_nonfull(T, r, key);
  }
}

B树删除节点(借位或合并)

void btree_merge(btree *T, btree_node *node, int idx) {
  btree_node *left = node->childrens[idx];
  btree_node *right = node->childrens[idx+1];
  int i = 0;
  /data merge
  left->keys[T->t-1] = node->keys[idx];
  for (i = 0;i < T->t-1;i ++) {
    left->keys[T->t+i] = right->keys[i];
  }
  if (!left->leaf) {
    for (i = 0;i < T->t;i ++) {
      left->childrens[T->t+i] = right->childrens[i];
    }
  }
  left->num += T->t;
  //destroy right
  btree_destroy_node(right);
  //node 
  for (i = idx+1;i < node->num;i ++) {
    node->keys[i-1] = node->keys[i];
    node->childrens[i] = node->childrens[i+1];
  }
  node->childrens[i+1] = NULL;
  node->num -= 1;
  if (node->num == 0) {
    T->root = left;
    btree_destroy_node(node);
  }
}
void btree_delete_key(btree *T, btree_node *node, KEY_VALUE key) {
  if (node == NULL) return ;
  int idx = 0, i;
  while (idx < node->num && key > node->keys[idx]) {
    idx ++;
  }
  if (idx < node->num && key == node->keys[idx]) {
    if (node->leaf) {
      for (i = idx;i < node->num-1;i ++) {
        node->keys[i] = node->keys[i+1];
      }
      node->keys[node->num - 1] = 0;
      node->num--;
      if (node->num == 0) { //root
        free(node);
        T->root = NULL;
      }
      return ;
    } else if (node->childrens[idx]->num >= T->t) {
      btree_node *left = node->childrens[idx];
      node->keys[idx] = left->keys[left->num - 1];
      btree_delete_key(T, left, left->keys[left->num - 1]);
    } else if (node->childrens[idx+1]->num >= T->t) {
      btree_node *right = node->childrens[idx+1];
      node->keys[idx] = right->keys[0];
      btree_delete_key(T, right, right->keys[0]);
    } else {
      btree_merge(T, node, idx);
      btree_delete_key(T, node->childrens[idx], key);
    }
  } else {
    btree_node *child = node->childrens[idx];
    if (child == NULL) {
      printf("Cannot del key = %d\n", key);
      return ;
    }
    if (child->num == T->t - 1) {
      btree_node *left = NULL;
      btree_node *right = NULL;
      if (idx - 1 >= 0)
        left = node->childrens[idx-1];
      if (idx + 1 <= node->num) 
        right = node->childrens[idx+1];
      if ((left && left->num >= T->t) ||
        (right && right->num >= T->t)) {
        int richR = 0;
        if (right) richR = 1;
        if (left && right) richR = (right->num > left->num) ? 1 : 0;
        if (right && right->num >= T->t && richR) { //borrow from next
          child->keys[child->num] = node->keys[idx];
          child->childrens[child->num+1] = right->childrens[0];
          child->num ++;
          node->keys[idx] = right->keys[0];
          for (i = 0;i < right->num - 1;i ++) {
            right->keys[i] = right->keys[i+1];
            right->childrens[i] = right->childrens[i+1];
          }
          right->keys[right->num-1] = 0;
          right->childrens[right->num-1] = right->childrens[right->num];
          right->childrens[right->num] = NULL;
          right->num --;
        } else { //borrow from prev
          for (i = child->num;i > 0;i --) {
            child->keys[i] = child->keys[i-1];
            child->childrens[i+1] = child->childrens[i];
          }
          child->childrens[1] = child->childrens[0];
          child->childrens[0] = left->childrens[left->num];
          child->keys[0] = node->keys[idx-1];
          child->num ++;
          node->key[idx-1] = left->keys[left->num-1];
          left->keys[left->num-1] = 0;
          left->childrens[left->num] = NULL;
          left->num --;
        }
      } else if ((!left || (left->num == T->t - 1))
        && (!right || (right->num == T->t - 1))) {
        if (left && left->num == T->t - 1) {
          btree_merge(T, node, idx-1);          
          child = left;
        } else if (right && right->num == T->t - 1) {
          btree_merge(T, node, idx);
        }
      }
    }
    btree_delete_key(T, child, key);
  }
}
int btree_delete(btree *T, KEY_VALUE key) {
  if (!T->root) return -1;
  btree_delete_key(T, T->root, key);
  return 0;
}

文章参考与<零声教育>的C/C++linux服务期高级架构线上课学习。有兴趣的同学可以了解下哦。

相关文章
|
2月前
|
存储 SQL Java
bigdata-18-Hive数据结构与存储格式
bigdata-18-Hive数据结构与存储格式
23 0
|
4月前
|
存储 算法 C语言
数据结构——二叉树的基本概念及顺序存储(堆)
数据结构——二叉树的基本概念及顺序存储(堆)
45 0
|
7月前
|
存储 算法 C语言
【数据结构】树的基础知识及三种存储结构
文章目录 一、树的概念与定义 二、树的有关名词 三、树的存储结构 1.双亲表示法 2.孩子表示法 3.孩子兄弟表示法(又叫二叉树法) 四、树的应用
|
2月前
|
存储 NoSQL 算法
【Redis技术进阶之路】「底层源码解析」揭秘高效存储模型与数据结构底层实现(字典)(二)
【Redis技术进阶之路】「底层源码解析」揭秘高效存储模型与数据结构底层实现(字典)
49 0
|
2月前
|
存储 C语言
【数据结构】线性表的链式存储结构
【数据结构】线性表的链式存储结构
18 0
|
2月前
|
存储 vr&ar
数据结构的图存储结构
数据结构的图存储结构
26 0
|
2月前
|
存储 NoSQL Redis
作者推荐 |【Redis技术进阶之路】「原理系列开篇」揭秘高效存储模型与数据结构底层实现(SDS)(三)
作者推荐 |【Redis技术进阶之路】「原理系列开篇」揭秘高效存储模型与数据结构底层实现(SDS)
36 0
|
2月前
|
存储 算法 C语言
【数据结构】— —邻接矩阵和邻接表存储图结构
【数据结构】— —邻接矩阵和邻接表存储图结构
20 0
|
3月前
|
存储 缓存 NoSQL
Redis数据结构的奇妙世界:一窥底层存储机制【redis第一部分】
Redis数据结构的奇妙世界:一窥底层存储机制【redis第一部分】
80 0
|
4月前
|
存储 NoSQL 关系型数据库
Redis Set 用了 2 种数据结构来存储,到现在才知道
Redis Set 用了 2 种数据结构来存储,到现在才知道
37 0