深入理解Sentinel系列-1.初识Sentinel

简介: 深入理解Sentinel系列-1.初识Sentinel

对于后端来说,我们需要提供一些接口去进行交互,比如登陆注册,支付下单等这样的一些功能,所以我们需要搭建一个整体的架构,早期的话可能没那么复杂,就是通过ssm框架组成的架构,然后通过部署tomcat来提供一个端口,随着整个并发量上去之后,我们需要去提供高性能的服务。


当我们的客户端,用户量的访问大了之后,对于后端系统的并发量会更高,并发量越高对于后端整个处理的能力就是一个挑战,因为我们需要保证,用户从10个到10000个的时候,我们需要提供给用户的是 它的响应时间不能超过多少。因为用户的操作是存在一个心理预期的,这就是所谓的用户体验。其次就是系统是否能够支撑这么大的量,是否会挂掉,挂掉之后网站无法提供对外服务的情况下,你无法产生商业价值。


比如说双十一零点的时候,那一瞬间瞬时的流量一定会大于正常时间的吞吐量,所以需要采用一定的机制来限流


限流的作用


  • 保护系统避免被瞬时流量冲垮
  • 预防恶意请求(如果自己公司不提供安全的话,可以去买高防的服务器)
  • 针对请求进行限制


服务器能支撑的连接数是多少

接口的处理能力(QPS/TPS),可以使用Jmeter来测试平均响应时间

资源限制(cpu(线程池)、内存、网络资源)


  • 如何控制流量

限流的指标(可以容纳的流量、已经容纳的流量、可以接受的流量) 阈值(基于这个指标)

限流的过程(通过算法来实现)

限流的结果(处理策略)


限流的算法


计数器


(Zookeeper:RequestThrottle 限流阀)、线程池大小、连接数大小


滑动窗口


实际上发送方和接收方都维护了一个滑动窗口

当发送端发送了一个数据包,等到接收端接收到后,接收端窗口开始滑动,发送端需要等待返回后才能滑动

其限流的核心就是流量只能在这个窗口里面,但是在tcp里面,其窗口是可以灵活的扩大的,其会根据当前网络拥挤的程度来决定窗口大小。


最大只能发送五个(阈值),超过了就不能发送了

所以说io通信是一个阻塞通信其实就是这样,基于数据包处理的结果,等到这个数据返回,如果数据一直不返回,那么这个时候请求是阻塞的。


漏桶


(用来控制传输速率的)本质上控制的是发送者的速度

流入水滴的速率代表的是请求,而滴出水滴的速度代表是处理的请求,不管来的请求有多少,但是能够处理的请求就这么多。


漏桶算法的特点:


  • 水的流出速度是固定的
  • 桶的大小也是固定的


令牌桶


其恒定的生成速率决定了并发数,假如说我每秒生成10个令牌,那么我的qps 就是 10


令牌桶对比漏桶的区别是,其能够处理瞬时突发流量,而不像漏桶一样,流出的速度是固定的。


令牌桶的设计:


  • 桶的大小
  • 令牌标记
  • 定时任务生成令牌
  • 提供令牌获取的接口


限流的实现


Semphore 信号量


分布式限流


其大小怎么计算呢?通过压测来进行计算

//单机实现
//令牌桶算法
    RateLimiter rateLimiter=RateLimiter.create(10); //TPS=10
    public void doRequest(){
        if(rateLimiter.tryAcquire()){ //获取令牌
            System.out.println("success");
        }else{
            System.out.println("failed");
        }
    }
// 令牌桶不需要释放,处理完后自动丢弃


Sentinel


Sentinel 是阿里中间件团队开源的,面向分布式服务架构的轻量级高可用流量控制组件,主要以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度来帮助用户保护服务的稳定性。

其中对于Sentinel最重要的两个东西:


  • 资源(需要被保护的东西)
  • 规则(限流的规则/熔断规则)

所有的流量经过这个组件后,会根据这个规则去控制这个流量来进行处理。


而熔断是一个这样的概念:

上图存在很多相互调用的情况,里面存在很多服务调用的链路,当Service D出现故障,会导致G F阻塞,间接的又会导致A B阻塞,如果特别多的请求阻塞在这里之后,会占用特别多的资源,内存、服务器、cpu的资源,这时候会导致服务器因为大量的资源被占用而导致其他问题。


当出现这种情况的时候,会触发一种熔断的方式,熔断以后会触发降级。


服务熔断


Sentinel的服务熔断有两种方式:基于响应时间的熔断和基于异常比率的熔断。基于响应时间的熔断是根据服务的响应时间来判断是否需要熔断,当服务的响应时间超过设定的阈值时,触发熔断。基于异常比率的熔断是根据服务的异常比率来判断是否需要熔断,当服务的异常比率超过设定的阈值时,触发熔断。这两种方式可以根据具体的业务场景和需求来选择使用。


demo


public static void main(String[] arg) {
        initFlowRule(); //初始化限流规则
        while(true){
            //ResourceName表示资源,控制访问流量的点
            /*try(Entry entry=SphU.entry("helloWorld")){
                System.out.println("hello world");
            }catch (BlockException e){
                System.out.println("被拒绝");
            }*/
            if (SphO.entry("helloWorld")) {
                System.out.println("Hello World");
                SphO.exit();// 释放
            }
        }
    }
    private static void initFlowRule(){
        List<FlowRule> rules=new ArrayList<>();
        FlowRule flowRule=new FlowRule();
        flowRule.setResource("helloWorld"); //针对那个资源设置规则
        flowRule.setGrade(RuleConstant.FLOW_GRADE_QPS);//QPS或者并发数
        flowRule.setCount(5); //QPS=5
        rules.add(flowRule);
        FlowRuleManager.loadRules(rules);
    }

Demo 运行之后,我们可以在日志 ~/logs/csp/${appName}-metrics.log.xxx 里看到下面的输出:`

-timestamp- -date time - -resource- 5表示, 通过的请求, block: 被拒绝的请
求 ,
1600608724000|2023-09-20 21:32:04|helloWorld|5|6078|5|0|5|0|0|0
1600608725000|2023-09-20 21:32:05|helloWorld|5|32105|5|0|0|0|0|0
1600608726000|2023-09-20 21:32:06|helloWorld|5|41084|5|0|0|0|0|0
1600608727000|2023-09-20 21:32:07|helloWorld|5|72211|5|0|0|0|0|0
1600608728000|2023-09-20 21:32:08|helloWorld|5|60828|5|0|0|0|0|0
1600608729000|2023-09-20 21:32:09|helloWorld|5|41696|5|0|0|0|0|0
@RestController
public class SentinelController {
    @Autowired
    TestService testService;
    @GetMapping("/hello/{name}")
    public String sayHello(@PathVariable("name") String name){
        return testService.doTest(name);
    }
}
@Service
public class TestService {
    @SentinelResource(value = "doTest",blockHandler ="blockHandler",fallback = "fallback") //声明限流的资源
    public String doTest(String name){
        return "hello , "+name;
    }
    public String blockHandler(String name, BlockException e){ //降级,限流触发的
       return "被限流了";
    }
    // 降级和限流是不一样的,限流可以触发降级,降级是因为已经被触发了
    // 降级是第三方业务调用的时候,针对下游的一个返回
    // 限流是针对当前服务访问的限制
    // 这两个配置只会调用一个
    public String fallback(String name){ //降级,熔断触发的
        return "被降级了";
    }
}
@SpringBootApplication
public class SpringbootSentinelApplication {
    public static void main(String[] args) {
        initFlowRule();
        SpringApplication.run(SpringbootSentinelApplication.class, args);
    }
    private static void initFlowRule(){
        List<FlowRule> rules=new ArrayList<>();
        FlowRule flowRule=new FlowRule();
        flowRule.setResource("doTest"); //针对那个资源设置规则
        flowRule.setGrade(RuleConstant.FLOW_GRADE_QPS);//QPS或者并发数
        flowRule.setCount(5); //QPS=5
        rules.add(flowRule);
        FlowRuleManager.loadRules(rules);
    }
}


Sentinel中的流量控制


维度 + 规则 + 资源


不管是通过什么样的方式,其核心原理就是,监控应用流量的qps或者并发线程数的指标,然后去判断这些指标的阈值去对流量进行控制,防止瞬时流量高峰导致系统被压垮。


SphU.entry(resourceName) ->


正常,则通过


被限制,抛出 FlowException( FlowException extends BlockException)


同一个资源也可以创建不同的规则,这个主要是通过List rules=new ArrayList<>();实现的,如果有多个规则,会去遍历,如果发现那个规则被触发则就执行,否则就顺利通过。


一个规则由什么组成?


  • resource 资源
  • count 阈值
  • grade 类型(基于QPS 还是 并发线程数)
  • limitApp,针对的调用来源.
  • strategy , 调用关系限流
  • controlBehavior . (直接拒绝, 冷启动,匀速排队)
目录
相关文章
|
7月前
|
负载均衡 监控 Java
Sentinel介绍与使用
Sentinel介绍与使用
414 3
|
监控 Dubbo Java
超详细的Sentinel入门
随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定性。
超详细的Sentinel入门
|
监控 Dubbo Java
Sentinel介绍及搭建
Sentinel介绍及搭建
329 0
|
SpringCloudAlibaba 双11 Sentinel
七.SpringCloudAlibaba极简入门-Sentinel熔断
在上一章节我们探讨了Sentinel的流控(限流)功能,Sentinel除了流控还提供了服务熔断和降级机制,服务之间的调用关系错综复杂,微服务的调用链上的某些服务资源不稳定(宕机,异常,超时)可能会导致可能请求的失败和请求的堆积,调用链产生连锁反应可能会导致整个微服务架构瘫痪。服务熔断降级机制是保障高可用的重要措施之一。
|
SpringCloudAlibaba 运维 监控
详解sentinel使用
1.概述 sentinel,springcloud alibaba中对标springcloud Netflix中的hystrix的组件,是一个强大的分布式系统保护工具,通过流量控制、熔断降级和系统负载保护等机制,保障了微服务架构的稳定性和可用性。它是Spring Cloud生态系统中的重要组件之一,被广泛应用于微服务开发和运维中。阿里每年的“双十一”,sentinel就是提供分布式保护机制的核心组件之一。
514 0
|
监控 Java API
Sentinel
Sentinel
|
监控 Dubbo Java
【Sentinel】初识Sentinel
【Sentinel】初识Sentinel
442 0
【Sentinel】初识Sentinel
|
算法 Sentinel
Sentinel学习二
如果我们不对Sentinel的异常提示做自定义,那么此时的提示是非常不详细的。如果做了自定义,就可以看到下面自定义的提示。sentinel提供了@SentinelResource注解帮助我们来实现自定义的熔断限流后的自定义方法处理,可以根据sentinel的aop可以看到处理的example,从而更为清晰的认识sentinel强大的功能。
119 0
Sentinel学习二
|
存储 监控 Dubbo
Sentinel 介绍| 学习笔记
本次课程主要分为三大部分,在这一部分中,将会介绍 Sentinel 诞生的背景、增长的核心特性。Sentinel 的完善的开源生态,以及流控降级组件对比。在第二部分中,会演示 Sentinel 的一些非常基本的使用场景,包括与 Spring cloud 的外边应用结合,Spring cloud 网关结合以及与 Dubbo 服务进行结合的演示。在第三部分中,介绍一下阿里云应用高可用服务 AHAS 的使用,以及如何快速的接入阿里云 AHAS 真正的流控降级。
Sentinel 介绍| 学习笔记
|
监控 算法 网络协议
Sentinel vs Hystrix 限流对比,到底怎么选?
Sentinel vs Hystrix 限流对比,到底怎么选?
808 0
Sentinel vs Hystrix 限流对比,到底怎么选?