分面中嵌入趋势线

简介: 分面中嵌入趋势线

简介

关于分面的推文,小编根据实际科研需求,已经分享了很多技巧。例如:

  1. 分面中添加不同表格
  2. 分面中添加不同的直线
  3. 基于分面的面积图绘制
  4. 分面中的细节调整汇总
  5. 基于分面的折线图绘制

最近科研中又遇到了与分面相关的需求:在分面中添加拟合线。本期就针对该问题,绘制出以下图形:

图形含义:随着时间的推移,展示多个测试产品退化累积量的箱线图。这些产品涵盖了两种不同的退化性能(PC)。图中的红线表示通过提出的模型拟合得到的平均产品退化累积量,而两条粉色线表示相应的90%置信区间。

选择绘制箱线图的原因在于想要突显多个产品之间的异质性,并强调退化路径分布特征呈现出的厚尾现象。

注意:本文图形是小编在研究领域中常用的图形,通过这里进行总结,希望能给读者们一些启发。

教程

数据介绍

由于数据模拟产生比较复杂,且不是本文的重点。小编以某个测试数据集为例,数据和代码可在我的 Github[1] 中找到。cal_data 为处理好的真实数据。PC 表示性能退化指标,共两个, Unit 表示希望展示的离散时间点,value 表示退化累积量。data_fit 表示根据所提模型拟合得到的区间估计和点估计。该数据集为列表形式,包含三个数据框,分别为:Low,Mean,Up。

load("true_data.RData")
load("data_fit.RData")


cal_data



data_fit 拟合结果


数据处理

根据真实数据集的数据结构,我们将拟合结果也转化成类似结构。主要思路:

  1. 将列表合并为一个数据框 bind_rows()
  2. 宽表转化为长表 pivot_longer()
  3. 提取三种估计的结果。

最终每个结果的形式和真实数据集的数据结构一致(很重要)!

time2 = seq(3,m,3) #希望展示的数据点(离散)
  merged_df2 <- bind_rows(data_fit, .id = "Unit") #合并数据
  merged_df2$Unit = rep(c("Low","Mean","Up"),each = length(0:m))
  mer_dat = merged_df2 %>% pivot_longer(cols = !c(Time,Unit), names_to = "PC", values_to = "Value")
  # 数据筛选,用于画直线
  mer_dat1 = mer_dat[mer_dat$"Time" %in% time2 & mer_dat$"Unit" == "Low", 2:4]; colnames(mer_dat1) = c("Unit","PC","value")
  mer_dat2 = mer_dat[mer_dat$"Time" %in% time2 & mer_dat$"Unit" == "Mean", 2:4]; colnames(mer_dat2) = c("Unit","PC","value")
  mer_dat3 = mer_dat[mer_dat$"Time" %in% time2 & mer_dat$"Unit" == "Up", 2:4]; colnames(mer_dat3) = c("Unit","PC","value")


mer_dat1

分面画图

通过添加三个 geom_smooth() 实现分面中添加拟合线。运行以下代码即可得到:

ggplot() + 
    geom_boxplot(data = true_data, aes(factor(Unit,levels = time2),value,fill=factor(Unit,levels = time2))) +
    geom_smooth(data= mer_dat1, aes(factor(Unit,levels = time2),value,group=1),
                color="#EE81C3", method="loess", linetype = 2,se = FALSE) +
    geom_smooth(data= mer_dat2, aes(factor(Unit,levels = time2),value,group=1),
                color="#DC3F20", method="loess",linetype = 1,se = FALSE) +
    geom_smooth(data= mer_dat3, aes(factor(Unit,levels = time2),value,group=1),
                color="#EE81C3", method="loess",linetype = 2,se = FALSE) +
    facet_wrap(vars(PC),scale="free") +
    scale_fill_viridis(discrete = TRUE,alpha = 0.8) + 
    theme_bw() + theme(panel.grid = element_blank(),legend.position = "none") +
    xlab("Time") + ylab("Y(t)")

函数汇总

为了方便起见,小编将其转化为了一个函数供大家参考:

boxplot.path.fit = function(data_fit = data_fit, cal_data = cal_data, leg.pos = "none"){
  time2 = seq(3,m,3) #希望展示的数据点(离散)
  merged_df2 <- bind_rows(data_fit, .id = "Unit") #合并数据
  merged_df2$Unit = rep(c("Low","Mean","Up"),each = length(0:m))
  mer_dat = merged_df2 %>% pivot_longer(cols = !c(Time,Unit), names_to = "PC", values_to = "Value")
  # 数据筛选,用于画直线
  mer_dat1 = mer_dat[mer_dat$"Time" %in% time2 & mer_dat$"Unit" == "Low", 2:4]; colnames(mer_dat1) = c("Unit","PC","value")
  mer_dat2 = mer_dat[mer_dat$"Time" %in% time2 & mer_dat$"Unit" == "Mean", 2:4]; colnames(mer_dat2) = c("Unit","PC","value")
  mer_dat3 = mer_dat[mer_dat$"Time" %in% time2 & mer_dat$"Unit" == "Up", 2:4]; colnames(mer_dat3) = c("Unit","PC","value")
  p1 = ggplot() + 
    geom_boxplot(data = cal_data, aes(factor(Unit,levels = time2),value,fill=factor(Unit,levels = time2))) +
    geom_smooth(data= mer_dat1, aes(factor(Unit,levels = time2),value,group=1),
                color="#EE81C3", method="loess", linetype = 2,se = FALSE) +
    geom_smooth(data= mer_dat2, aes(factor(Unit,levels = time2),value,group=1),
                color="#DC3F20", method="loess",linetype = 1,se = FALSE) +
    geom_smooth(data= mer_dat3, aes(factor(Unit,levels = time2),value,group=1),
                color="#EE81C3", method="loess",linetype = 2,se = FALSE) +
    facet_wrap(vars(PC),scale="free") +
    scale_fill_viridis(discrete = TRUE,alpha = 0.8) + 
    theme_bw() + theme(panel.grid = element_blank(),legend.position = leg.pos) +
    xlab("Time") + ylab("Y(t)")
  return(p1)
}
boxplot.path.fit(data_fit = data_fit, cal_data = cal_data, leg.pos = "none")

参考资料

[1]

Github: https://github.com/liangliangzhuang/R_example/tree/master/2023%E5%B9%B4/2023.12.16%20%E5%88%86%E9%9D%A2%E4%B8%AD%E6%B7%BB%E5%8A%A0%E6%8B%9F%E5%90%88%E6%9B%B2%E7%BA%BF

目录
相关文章
|
BI 数据挖掘
公开课02期 |基于宜搭的《客户关系管理(CRM)》应用搭建
主要展示宜搭搭建CRM应用的大致结构,用户可以根据自己的需求搭建简单或复杂的CRM应用。
24114 1
公开课02期 |基于宜搭的《客户关系管理(CRM)》应用搭建
|
JSON 搜索推荐 数据库
基于Qt框架实战:MP3音乐播放器搜索引擎
基于Qt框架实战:MP3音乐播放器搜索引擎
基于Qt框架实战:MP3音乐播放器搜索引擎
|
Ubuntu Linux 开发工具
嵌入式Linux系列第4篇:Kernel编译下载
嵌入式Linux系列第4篇:Kernel编译下载
|
网络协议 网络安全 CDN
「红队建设」Domain Fronting隐藏C2服务器技术
「红队建设」Domain Fronting隐藏C2服务器技术
|
SQL 安全 数据库
如何在Django中正确使用参数化查询或ORM来避免SQL注入漏洞?
如何在Django中正确使用参数化查询或ORM来避免SQL注入漏洞?
726 77
|
11月前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
9034 80
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
存储 SQL NoSQL
mybatis-plus小技能: 分表策略(按年分表和按月分表)
业务场景: 日志、交易流水表或者其他数据量大的表,通过日期进行了水平分表,需要通过日期参数,动态的查询数据。 实现思路:利用MybatisPlus的动态表名插件DynamicTableNameInnerInterceptor ,实现Sql执行时,动态的修改表名。
9165 3
mybatis-plus小技能: 分表策略(按年分表和按月分表)
|
人工智能 测试技术
测试数据不再难,人工智能批量生成给你用!
本文介绍了如何利用ChatGPT生成测试数据。测试数据是验证功能和触发异常场景的关键,设计时需全面考虑等价类、边界值和正交法。实践中,先明确数据类型、格式和需求,然后向ChatGPT提供相关信息。例如,对于只能输入中国手机号的输入框,初始提示可能只包含正常手机号,但应进一步补充异常场景,如非数字、长度错误、非中国号码、特殊字符、空输入等。此外,可通过指定yaml格式来满足代码使用需求。总结来说,生成测试数据需清晰定义需求,拆分任务,并系统测试各种变化。
winform实现最小化至系统托盘
winform实现最小化至系统托盘
206 0
|
存储 达摩院 供应链
排产排程问题【数学规划的应用(含代码)】阿里达摩院MindOpt
**文章摘要:** 本文探讨了使用阿里巴巴达摩院的MindOpt优化求解器解决制造业中的排产排程问题。排产排程涉及物料流动、工序安排、设备调度等多个方面,通常通过数学规划方法建模。MindOpt支持线性规划、整数规划等,能有效处理大规模数据。案例以香皂制造工厂为例,考虑了多种油脂的购买、存储和生产计划,以及价格变化和存储成本。问题通过数学建模转化为MindOpt APL代码,求解器自动寻找最优解,以最大化利润。文章还提供了代码解析,展示了解决方案的细节,包括目标函数(利润最大化)、约束条件(如生产效率、库存管理)以及结果分析。