Linux内核中常用的C语言技巧(一)

简介: Linux内核中常用的C语言技巧(一)

前言

Linux内核是基于C语言编写的,熟练掌握C语言是深入学习Linux内核的基本要求。

GNU C语言的扩展

GCC的C编译器除了支持ANSI C标准之外,还对C语言进行了很多的扩充。

这些扩充对代码优化、目标代码布局以及安全检查等方面提供了很强的支持,因此支持GNU扩展的C语言称为GNU C语言

Linux内核采用GCC编译器,所以Linux内核的代码自然使用了很多GCC的新扩充特性。

本章介绍一些GCC C语言扩充的新特性,希望读者在学习Linux内核时特别留意。

(1)语句表达式

在GNU C语言中,括号里的复合语句可以看作一个表达式,称为语句表达式。

在一个语句表达式里,可以使用循环、跳转和局部变量等。这个特性通常用在宏定义中,可以让宏定义变得更安全,如比较两个值的大小。

#define max(a,b) ((a) > (b) ? (a) : (b))

上述代码会导致安全问题,a和b有可能会计算两次,比如a传入i++,b传入j++。在GNU C语言中,如果知道a和b的类型,可以这样写这个宏。

#define maxint(a,b) \
          ({int _a = (a), _b = (b); _a > _b ? _a : _b; })

如果你不知道a和b的类型,还可以使用typeof类转换宏。

<include/linux/kernel.h>#define min(x, y) ({        \
typeof(x) _min1 = (x);      \
typeof(y) _min2 = (y);      \
(void) (&_min1 == &_min2);    \
_min1 < _min2 ? _min1 : _min2; })

typeof也是GNU C语言的一个扩充用法,可以用来构造新的类型,通常和语句表达式一起使用。

下面是一些例子。

typeof (*x) y;
typeof (*x) z[4];
typeof (typeof (char *)[4]) m;
  • 第一句声明y是x指针指向的类型。
  • 第二句声明z是一个数组,其中数组的类型是x指针指向的类型。
  • 第三句声明m是一个指针数组,和char*m[4]声明是一样的。

(2)零长数组

GNU C语言允许使用变长数组,这在定义数据结构时非常有用。

<mm/percpu.c>
struct pcpu_chunk {
struct list_head  list;
unsigned long    populated[];  /* 变长数组 */};

数据结构最后一个元素被定义为零长度数组,不占结构体空间

这样,我们可以根据对象大小动态地分配结构的大小。

struct line {
int length;
char contents[0];
};
struct line *thisline = malloc(sizeof(struct line) +this_length);
thisline->length = this_length;

如上例所示,struct line数据结构定义了一个int length变量和一个变长数组contents[0],这个struct line数据结构的大小只包含int类型的大小,不包含contents的大小,也就是sizeof (struct line) =sizeof (int)。

创建结构体对象时,可根据实际的需要指定这个可变长数组的长度,并分配相应的空间,如上述实例代码分配了this_length 字节的内存,并且可以通过contents[index]来访问第index个地址的数据

(3)case范围

GNU C语言支持指定一个case的范围作为一个标签,如:

case low ...high:
case 'A' ...'Z':

这里low到high表示一个区间范围,在ASCII字符代码中也非常有用。下面是Linux内核中的代码例子。

<arch/x86/platform/uv/tlb_uv.c>
static int local_atoi(const char *name)
{
int val = 0;
for (;; name++) {
switch (*name) {
case '0' ...'9':
val = 10*val+(*name-'0');
break;
default:
return val;
}
}
}

另外,还可以用整形数来表示范围,但是这里需要注意在“…”两边有空格,否则编译会出错。

<drivers/usb/gadget/udc/at91_udc.c>
static int at91sam9261_udc_init(struct at91_udc *udc)
{
for (i = 0; i < NUM_ENDPOINTS; i++) {
ep = &udc->ep[i];
switch (i) {
case 0:
ep->maxpacket = 8;
break;
case 1 ...3:
ep->maxpacket = 64;
break;
case 4 ...5:
ep->maxpacket = 256;
break;
}
}
}

(4)标号元素

标准C语言要求数组或结构体初始化值必须以固定顺序出现。但GNU C语言可以通过指定索引或结构体成员名来初始化,不必按照原来的固定顺序进行初始化。

结构体成员的初始化在 Linux 内核中经常使用,如在设备驱动中初始化 file_operations数据结构。下面是Linux内核中的一个代码例子。

<drivers/char/mem.c>
static const struct file_operations zero_fops = {
.llseek      = zero_lseek,
.read        = new_sync_read,
.write       = write_zero,
.read_iter     = read_iter_zero,
.aio_write     = aio_write_zero,
.mmap        = mmap_zero,
};

如上述代码中的zero_fops的成员llseek初始化为zero_lseek函数,read成员初始化为new_sync_read函数,依次类推。当file_operations数据结构的定义发生变化时,这种初始化方法依然能保证已知元素的正确性,对于未初始化成员的值为0或者NULL。

(5)可变参数宏

在GNU C语言中,宏可以接受可变数目的参数,这主要运用在输出函数里。

<include/linux/printk.h>
#define pr_debug(fmt, ...) \
dynamic_pr_debug(fmt, ##__VA_ARGS__)

“…”代表一个可以变化的参数表,“VA_ARGS”是编译器保留字段,预处理时把参数传递给宏。当宏的调用展开时,实际参数就传递给dynamic_pr_debug函数了。

(6)函数属性

GNU C语言允许声明

  • 函数属性(Function Attribute)、
  • 变量属性(Variable Attribute)和
  • 类型属性(Type Attribute),

以便编译器进行特定方面的优化和更仔细的代码检查。特殊属性语法格式为:

__attribute__ ((attribute-list))

GNU C语言里定义的函数属性有很多,如noreturn、format以及const等。

此外,还可以定义一些和处理器体系结构相关的函数属性,如ARM体系结构中可以定义interrupt、isr等属性,有兴趣的读者可以阅读GCC的相关文档。

下面是Linux内核中使用format属性的一个例子。

<drivers/staging/lustru/include/linux/libcfs/>
int libcfs_debug_msg(struct libcfs_debug_msg_data *msgdata,const char *format1, ...)
__attribute__ ((format (printf, 2, 3)));

libcfs_debug_msg()函数里声明了一个format函数属性,它会告诉编译器按照printf的参数表的格式规则对该函数参数进行检查。

  • 数字2表示第二个参数为格式化字符串,
  • 数字3表示参数“…”里的第一个参数在函数参数总数中排在第几个。

noreturn属性通知编译器,该函数从不返回值,这让编译器消除了不必要的警告信息。比如die函数,该函数不会返回。

void __attribute__((noreturn)) die(void);

const 属性会让编译器只调用该函数一次,以后再调用时只需要返回第一次结果即可,从而提高效率。

static inline u32 __attribute_const__read_cpuid_cachetype(void)
{
return read_cpuid(CTR_EL0);
}

Linux还有一些其他的函数属性,被定义在compiler-gcc.h文件中。

#define __pure           
__attribute__((pure))
#define __aligned(x)       
__attribute__((aligned(x)))
#define __printf(a, b)      
__attribute__((format(printf, a, b)))
#define __scanf(a, b)      
__attribute__((format(scanf, a, b)))
#define noinline         
__attribute__((noinline))
#define __attribute_const__   
__attribute__((__const__))
#define __maybe_unused      
__attribute__((unused))
#define __always_unused     
__attribute__((unused))

(7)变量属性和类型属性

变量属性可以对变量或结构体成员进行属性设置。类型属性常见的属性有 alignment、packed和sections等。

alignment属性规定变量或者结构体成员的最小对齐格式,以字节为单位。

struct qib_user_info {
__u32 spu_userversion;
__u64 spu_base_info;
} __aligned(8);

在这个例子中,编译器以8字节对齐的方式来分配qib_user_info这个数据结构。

packed属性可以使变量或者结构体成员使用最小的对齐方式,对变量是以字节对齐,对域是以位对齐。

struct test{
char a;
int x[2] __attribute__ ((packed));
};

x成员使用了packed属性,它会存储在变量a后面,所以这个结构体一共占用9字节。

(8)内建函数

GNU C语言提供一系列内建函数进行优化,这些内建函数以“builtin”作为函数名前缀。

下面介绍Linux内核常用的一些内建函数。

  • __builtin_constant_p(x):判断x是否在编译时就可以被确定为常量。如果x为常量,该函数返回1,否则返回0。
#define __swab16(x)        \
(__builtin_constant_p((__u16)(x)) ?  \
___constant_swab16(x) :      \
__fswab16(x))
  • __builtin_expect(exp, c):这里的意思是exp==c的概率很大,用来引导GCC编译器进行条件分支预测。开发人员知道最可能执行哪个分支,并将最有可能执行的分支告诉编译器,让编译器优化指令序列,使指令尽可能地顺序执行,从而提高CPU预取指令的正确率。
#define LIKELY(x) __builtin_expect(!!(x), 1) //x很可能为真
#define UNLIKELY(x) __builtin_expect(!!(x), 0) //x很可能为假
  • __builtin_prefetch(const void *addr, int rw, int locality):主动进行数据预取,在使用地址addr的值之前就把其值加载到cache中,减少读取的延迟,从而提高性能。该函数可以接受3个参数:
  • 第一个参数addr表示要预取数据的地址;
  • 第二个参数rw表示读写属性,1表示可写,0表示只读;
  • 第三个参数locality表示数据在cache中的时间局部性,其中0表示读取完addr的之后不用保留在cache中,而1~3表示时间局部性逐渐增强。

如下面的prefetch()和prefetchw()函数的实现。

<include/linux/prefetch.h>
#define prefetch(x) __builtin_prefetch(x)
#define prefetchw(x) __builtin_prefetch(x,1)

下面是使用prefetch()函数进行优化的一个例子。

<mm/page_alloc.c>
void __init __free_pages_bootmem(struct page *page,unsigned int order)
{
unsigned int nr_pages = 1 << order;
struct page *p = page;
unsigned int loop;
prefetchw(p);
for (loop = 0; loop < (nr_pages - 1); loop++, p++) 
{
prefetchw(p + 1);
__ClearPageReserved(p);
set_page_count(p, 0);
}
}

在处理struct page数据之前通过prefetchw()预取到cache中,从而提升性能。

(9)asmlinkage

在标准C语言中,函数的形参在实际传入参数时会涉及参数存放问题。对于x86结构,函数参数和局部变量被一起分配到函数的局部堆栈里。

<arch/x86/include/asm/linkage.h>
#define asmlinkage CPP_ASMLINKAGE __attribute__((regparm(0)))

attribute((regparm(0))):告诉编译器该函数不需要通过任何寄存器来传递参数,只通过堆栈来传递。

对于ARM来说,函数参数的传递有一套ATPCS标准,即通过寄存器来传递。ARM中的R0~R4寄存器存放传入参数,当参数超过5个时,多余的参数被存放在局部堆栈中。所以,ARM平台没有定义asmlinkage

<include/linux/linkage.h>
#define asmlinkage CPP_ASMLINKAGE
#define asmlinkage CPP_ASMLINKAGE

(10)UL

在Linux内核代码中,我们经常会看到一些数字的定义使用了UL后缀修饰。

数字常量会被隐形定义为int类型,两个int类型相加的结果可能会发生溢出,因此使用UL强制把int类型数据转换为unsigned long类型,这是为了保证运算过程不会因为int的位数不同而导致溢出。

  • 1 :表示有符号整型数字1
  • 1UL:表示无符号长整型数字1

参考资料

《奔跑吧Linux内核》

目录
相关文章
|
8天前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
41 4
|
12天前
|
缓存 算法 Linux
深入理解Linux内核调度器:公平性与性能的平衡####
真知灼见 本文将带你深入了解Linux操作系统的核心组件之一——完全公平调度器(CFS),通过剖析其设计原理、工作机制以及在实际系统中的应用效果,揭示它是如何在众多进程间实现资源分配的公平性与高效性的。不同于传统的摘要概述,本文旨在通过直观且富有洞察力的视角,让读者仿佛亲身体验到CFS在复杂系统环境中游刃有余地进行任务调度的过程。 ####
33 6
|
3天前
|
算法 Linux 开发者
Linux内核中的锁机制:保障并发控制的艺术####
本文深入探讨了Linux操作系统内核中实现的多种锁机制,包括自旋锁、互斥锁、读写锁等,旨在揭示这些同步原语如何高效地解决资源竞争问题,保证系统的稳定性和性能。通过分析不同锁机制的工作原理及应用场景,本文为开发者提供了在高并发环境下进行有效并发控制的实用指南。 ####
|
11天前
|
缓存 资源调度 安全
深入探索Linux操作系统的心脏——内核配置与优化####
本文作为一篇技术性深度解析文章,旨在引领读者踏上一场揭秘Linux内核配置与优化的奇妙之旅。不同于传统的摘要概述,本文将以实战为导向,直接跳入核心内容,探讨如何通过精细调整内核参数来提升系统性能、增强安全性及实现资源高效利用。从基础概念到高级技巧,逐步揭示那些隐藏在命令行背后的强大功能,为系统管理员和高级用户打开一扇通往极致性能与定制化体验的大门。 --- ###
38 9
|
10天前
|
缓存 负载均衡 Linux
深入理解Linux内核调度器
本文探讨了Linux操作系统核心组件之一——内核调度器的工作原理和设计哲学。不同于常规的技术文章,本摘要旨在提供一种全新的视角来审视Linux内核的调度机制,通过分析其对系统性能的影响以及在多核处理器环境下的表现,揭示调度器如何平衡公平性和效率。文章进一步讨论了完全公平调度器(CFS)的设计细节,包括它如何处理不同优先级的任务、如何进行负载均衡以及它是如何适应现代多核架构的挑战。此外,本文还简要概述了Linux调度器的未来发展方向,包括对实时任务支持的改进和对异构计算环境的适应性。
31 6
|
11天前
|
缓存 Linux 开发者
Linux内核中的并发控制机制:深入理解与应用####
【10月更文挑战第21天】 本文旨在为读者提供一个全面的指南,探讨Linux操作系统中用于实现多线程和进程间同步的关键技术——并发控制机制。通过剖析互斥锁、自旋锁、读写锁等核心概念及其在实际场景中的应用,本文将帮助开发者更好地理解和运用这些工具来构建高效且稳定的应用程序。 ####
30 5
|
11天前
|
算法 Unix Linux
深入理解Linux内核调度器:原理与优化
本文探讨了Linux操作系统的心脏——内核调度器(Scheduler)的工作原理,以及如何通过参数调整和代码优化来提高系统性能。不同于常规摘要仅概述内容,本摘要旨在激发读者对Linux内核调度机制深层次运作的兴趣,并简要介绍文章将覆盖的关键话题,如调度算法、实时性增强及节能策略等。
|
12天前
|
存储 监控 安全
Linux内核调优的艺术:从基础到高级###
本文深入探讨了Linux操作系统的心脏——内核的调优方法。文章首先概述了Linux内核的基本结构与工作原理,随后详细阐述了内核调优的重要性及基本原则。通过具体的参数调整示例(如sysctl、/proc/sys目录中的设置),文章展示了如何根据实际应用场景优化系统性能,包括提升CPU利用率、内存管理效率以及I/O性能等关键方面。最后,介绍了一些高级工具和技术,如perf、eBPF和SystemTap,用于更深层次的性能分析和问题定位。本文旨在为系统管理员和高级用户提供实用的内核调优策略,以最大化Linux系统的效率和稳定性。 ###
|
11天前
|
Java Linux Android开发
深入探索Android系统架构:从Linux内核到应用层
本文将带领读者深入了解Android操作系统的复杂架构,从其基于Linux的内核到丰富多彩的应用层。我们将探讨Android的各个关键组件,包括硬件抽象层(HAL)、运行时环境、以及核心库等,揭示它们如何协同工作以支持广泛的设备和应用。通过本文,您将对Android系统的工作原理有一个全面的认识,理解其如何平衡开放性与安全性,以及如何在多样化的设备上提供一致的用户体验。
|
10天前
|
缓存 运维 网络协议
深入Linux内核架构:操作系统的核心奥秘
深入Linux内核架构:操作系统的核心奥秘
27 2