【论文速递】ICCV2019 - 基于特征加权和增强的小样本分割

简介: 【论文速递】ICCV2019 - 基于特征加权和增强的小样本分割

【论文速递】ICCV2019 - 基于特征加权和增强的小样本分割

【论文原文】:Feature Weighting and Boosting for Few-Shot Segmentation

作者信息】:Khoi Nguyen and Sinisa Todorovic

获取地址:https://openaccess.thecvf.com/content_ICCV_2019/papers/Nguyen_Feature_Weighting_and_Boosting_for_Few-Shot_Segmentation_ICCV_2019_paper.pdf

博主关键词: 小样本学习,语义分割,特征加权增强

推荐相关论文:

【论文速递】WACV2023 - 循环相似注意力的小样本医学图像分割
- https://blog.csdn.net/qq_36396104/article/details/128874255

摘要:

本文研究了图像中前景对象的小样本分割。我们在训练图像的小子集上训练CNN,每个子集都模仿few-shot设置。在每个子集中,一张图像作为查询图像,另一张图像作为支持图像,并进行基本真理分割。CNN首先从查询和支持图像中提取特征图。然后,一个类特征向量被计算为支持的特征映射在已知前景的平均值。最后,利用类特征向量与查询的特征映射之间的余弦相似度在查询图像中分割目标对象。 我们通过以下两个方面做出了贡献:(1)提高特征的鉴别性,使其激活在前景上高而在其他地方低;(2)以测试中支持图像分割时产生的损失梯度为指导,由专家集合进行推理。 我们对PASCAL-5 i和COCO-20i数据集的评估表明,我们明显优于现有的方法。

简介:

本文研究了图像中前景对象的小样本分割。如图1所示,只给出几个训练示例(称为支持图像)以及它们对目标对象类的groundtruth分割,我们的目标是在查询图像中分割目标类。这个问题很有挑战性,因为支持图像和查询图像在目标类的实例数量和3D姿态上可能有显著差异,如图1所示。这个重要的问题出现在许多处理目标类的稀缺训练示例的应用程序中。

最近,先前的工作已经解决了这个问题,在few-shot约束下,在一个大型训练集上训练一个对象分割器[26,6,20]。训练集被分成许多小的子集。在每个子集中,一张图像作为查询,另一张图像作为具有已知基本真值的支持图像。如图1所示,他们的框架使用CNN -例如VGG[27]或ResNet[12] -从支持和查询图像中提取特征图。支持的特征图首先集中在已知的真实前景上。然后,使用支持的掩码池特征来估计与查询特征的余弦相似度映射。生成的相似性映射和查询的特征最后传递给几个卷积层,以便在查询中分割目标对象类。将预测值与查询的ground-truth之间的损失用于CNN的训练。

上述框架有两个关键的局限性,我们将在本文中解决这两个问题。首先,我们通过实验发现,CNN倾向于学习不同类别的高激活的非判别特征。 为了解决这个问题,如图2所示,我们的第一个贡献通过有效地估计特征相关性来扩展先前的工作,以鼓励它们的激活在目标类的groundtruth位置内高,而在图像的其他地方低。这被表述为一个优化问题,为此我们推导出一个封闭形式的解。

其次,在前面提到的目标类的巨大变化面前,从很少的支持图像中学习容易对查询进行过拟合和泛化效果差。 为了解决这个问题,如图3所示,我们的第二个贡献是一个新的增强推理,由传统的集成学习方法驱动,该方法对过拟合具有鲁棒性[9,10]。我们指定了一个专家集合,其中每个专家都适应最初从支持图像中提取的特征。这种特征适应是由分割支持图像时相对于其提供的ground truth所引起的损失梯度所指导的。专家集合生成查询图像中相应的对象分割集合,加权平均作为我们的最终预测。重要的是,虽然我们在训练和测试中都使用了第一个贡献,类似于传统的集成学习方法,但我们的第二个贡献仅应用于测试, 以提高基于cnn的分段器的性能。

对于K-shot设置,自然地扩展了这两种贡献,通过联合分析提供的支持图像及其ground-truth来分割查询图像,而不是像之前的工作那样单独处理支持图像。

为了进行评估,我们将之前在基准PASCAL-5 i数据集[26]上的工作进行了比较。我们的结果表明,我们大大超过了目前的技术水平。此外,我们还对更大、更具挑战性的COCO-20i数据集[16]进行评估。据我们所知,我们是第一个在COCO-20i上报告小样本对象分割结果的。

在下面,第2节回顾了以前的工作,第3节指定了我们的两个贡献,第4节描述了我们的实现细节和复杂性,第5节介绍了我们的实验结果。

目录
相关文章
|
安全 数据挖掘 Linux
Linux命令rpm深度解析
`rpm`是Linux下的软件包管理器,用于安装、升级、卸载和查询`.rpm`包,常见于Red Hat系Linux。它管理依赖、维护软件信息数据库,支持版本控制和安全验证。常用命令如`-i`安装,`-U`升级,`-e`卸载,`-q`查询。安装时用`-v`和`-h`可查看详细信息和进度。注意依赖关系、权限和签名验证,最佳实践包括使用仓库、定期更新和备份数据。
|
机器学习/深度学习 数据采集 监控
基于YOLOv8的路面缝隙精准识别项目【完整源码数据集+PyQt5界面+完整训练流程+开箱即用!】
这是一套基于YOLOv8的路面裂缝精准识别项目,集成图形化界面(PyQt5)与完整训练流程,支持图片、视频、文件夹及摄像头多种输入方式,开箱即用。系统包含裂缝检测模型、数据集、训练代码和GUI工具,实现从训练到部署的一站式解决方案。核心优势包括高精度检测(mAP超90%)、友好的操作界面、灵活的部署方式,适合高校科研、工程实践及毕业设计。资源包含源码、预训练权重与标注数据,助力快速上手!
|
2月前
|
人工智能 自然语言处理 API
AI战略丨阿里云百炼,让企业应用大模型更简单
企业级的大模型开发,是一个复杂的过程,阿里云百炼平台以更经济高效的模型推理服务和更智能灵活的模型定制能力,让更多的企业以更低的门槛、更好的效果使用大模型产品赋能业务。
AI战略丨阿里云百炼,让企业应用大模型更简单
|
2月前
|
存储 算法 关系型数据库
【Java架构师体系课 | MySQL篇】② 深入理解MySQL索引底层数据结构与算法
InnoDB索引为何采用B+树?本文由浅入深解析二叉树、红黑树、B树的缺陷,详解B+树的结构优势:非叶子节点不存数据、叶子节点有序且双向链接,支持高效范围查询与磁盘预读,三层即可存储两千多万数据,极大提升查询性能。
197 7
|
分布式计算 数据可视化 大数据
用Spark分析Amazon的8000万商品评价(内含数据集、代码、论文)
尽管数据科学家经常通过分布式云计算来处理数据,但是即使在一般的笔记本电脑上,只要给出足够的内存,Spark也可以工作正常(在这篇文章中,我使用2016年MacBook Pro / 16GB内存,分配给Spark 8GB内存)。
20045 0
|
11月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
RT-DETR改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
892 10
RT-DETR改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
|
4月前
|
消息中间件 canal 缓存
缓存与数据库一致性终极指南:从入门到放弃?不,到精通!下
本文探讨缓存一致性难题,从延时双删到重试机制,分析同步重试、异步重试、消息队列补偿及Binlog监听(Canal)等方案,结合优缺点与适用场景,最终提出根据业务需求权衡一致性与性能,选择合适策略。
|
11月前
|
SQL 存储 关系型数据库
MySQL主从复制 —— 作用、原理、数据一致性,异步复制、半同步复制、组复制
MySQL主从复制 作用、原理—主库线程、I/O线程、SQL线程;主从同步要求,主从延迟原因及解决方案;数据一致性,异步复制、半同步复制、组复制
1237 11
|
机器学习/深度学习 测试技术 计算机视觉
【YOLOv8改进】DAT(Deformable Attention):可变性注意力 (论文笔记+引入代码)
YOLO目标检测创新改进与实战案例专栏探讨了YOLO的有效改进,包括卷积、主干、注意力和检测头等机制的创新,以及目标检测分割项目的实践。专栏介绍了Deformable Attention Transformer,它解决了Transformer全局感受野带来的问题,通过数据依赖的位置选择、灵活的偏移学习和全局键共享,聚焦相关区域并捕获更多特征。模型在多个基准测试中表现优秀,代码可在GitHub获取。此外,文章还展示了如何在YOLOv8中应用Deformable Attention。
|
Ubuntu 前端开发 Linux
Ubuntu防火墙命令大集合
【7月更文挑战第13天】
891 1
Ubuntu防火墙命令大集合

热门文章

最新文章