【论文速递】WACV2023 - 循环相似注意力的小样本医学图像分割

简介: 【论文速递】WACV2023 - 循环相似注意力的小样本医学图像分割

【论文原文】:Few-shot Medical Image Segmentation with Cycle-resemblance Attention

获取地址:https://arxiv.org/pdf/2212.03967.pdf

博主关键词: 小样本学习,语义分割,自监督,原型

推荐相关论文:

【论文速递】PR2023 - 基于自正则原型网络的小样本语义分割


摘要:


近年来,由于医学影像应用需求的不断提高以及对医学图像标注的专业要求,小样本学习在医学图像语义分割领域越来越受到重视。为了对数量有限的标记医学图像进行分割,现有的研究大多使用原型网络(PN),并取得了令人瞩目的成功。然而,这些方法忽略了从所提出的表示网络中提取的查询图像特征,未能保持查询图像和支持图像之间的空间联系。在本文中,我们提出了一种新的自监督小样本医学图像分割网络,并引入了一种新的循环相似注意(CRA)模块,以充分利用查询和支持医学图像之间的像素级关系。 值得注意的是,我们首先将多个注意块排列起来,提炼出更丰富的关系信息。然后,我们通过将CRA模块与经典原型网络集成来呈现CRAPNet,其中查询和支持特征之间的像素级关系被很好地重新捕获用于分割。在两种不同的医学图像数据集(如腹部MRI和腹部CT)上进行的大量实验证明了我们的模型优于现有的最先进方法。


简介:


语义分割是计算机视觉中的一项基本任务,近年来由于注释数据的蓬勃发展,语义分割取得了令人瞩目的成功。因此,它开创了医学图像分割的新兴现实应用,可以帮助医生更快地诊断疾病,更好地规划治疗和提供治疗。要高效地处理大规模医学图像,与一般图像不同,准确、专业的标签标注尤为重要。然而,对如此大量的数据进行标注是非常耗时和需要知识的[21,5,13,19,4]。因此,在医学影像领域,小样本学习[32,34,16,41]由于其不需要太多标记数据的显著优势,越来越受到研究者的关注。具体来说,可以从一个或几个像素级注释样例(支持数据)中提取判别表示,实现对未注释样例(查询数据)的像素级标签预测。此外,与一般以2D格式存储的图像相比,医学图像通常是高度结构化的人体器官和躯干区域的3D图像,有多种形式,如MRI(磁共振成像)、US(超声)、CT(计算机断层扫描)和x射线[1,24,20,29,6,35,15]。医学图像中感兴趣的区域通常很小且均匀,而不相关的背景相当广泛且不均匀[40,34]。在医学图像中,大量的小细胞、组织和器官往往被挤在一起,使得很难在前景和背景之间划出界限。

640.png

Fig. 1. 图1:(a)经典的池化网络原型。原型是通过从提取支持特性的窗口池生成的。(b)将我们提出的周期相似注意(CRA)模块插入到池化步骤前,通过像素级的注意将支持特征和查询特征整合在一起,增强它们之间的空间关系。此外,还引入了原型来指导查询掩码的预测。

根据生成预测二值掩码的方式,现有的小样本图像分割技术大致可分为亲和学习和原型学习[16]。后者设计原型网络[32,17,41,34,38,16],并生成对噪声具有广义和鲁棒性的原型。如图1(a)所示,通过支持掩码对支持图像特征进行细化,并将其送入池化模块以获得原型。最后,原型与采用普通操作的查询特性(例如,连接)相结合。尽管基于原型的方法具有很好的性能,但仍然存在一些缺点。(i)这些方法不可避免地丢失了支持图像的空间信息,特别是当支持图像与查询图像之间的物体外观由于原型数量过多或不足而出现较大变化[16]时。(ii)图像中不同类之间的关系是对查询图像进行分割决策的关键,而目前的方法忽略了这一点。(iii)在训练阶段,目前的原型网络对支持特征和查询特征之间的交互没有足够的重视。这种不充分的相互作用将导致无法生成完全具有代表性的原型。然而,由于查询图像和支持图像在前景和背景上有更多的相似性,这种交互在图像分割任务中是至关重要的。特别是在医学图像环境中,不同对象的排列在查询图像和支持图像之间通常遵循类似的模式。

为了解决前面提到的问题,在本文中,我们提出了一种新颖的具有循环相似注意机制的小样本医学图像分割方法,如图1(b)所示。主要介绍了一种新的循环相似注意原型网络(CRAPNet),以充分捕捉物体的内在细节,并保留查询图像和支持图像中像素之间的空间信息。如图2所示,我们没有通过检查匹配的周期一致像素对是否属于同一类来给出一个附加偏差B,而是比较这些像素对之间的相似度。通过这种方式,我们建立了一个支持-查询-支持连接,并结合像素与其最相似的“邻居”之间的关系来获得原型。此外,通过深入研究支持和查询医学图像之间的差异,我们认为,如果对象是高度结构化和有组织的,查询和支持图像可以特别地被视为中断的视频序列或图像流。因此,我们设计了周期相似模块在给定像素位置上计算加权和的非局部操作,用于非局部结构的支持特征和查询特征。在某种意义上,这种非本地结构可以打包到一个网络块中,该网络块可以链接在一起,并用作一个drop-in模块。随后,在上述模块的基础上设计了支持分支和查询分支,并对它们之间的连接进行了交互描述。

本文的贡献可以总结如下:

  • 据我们所知,这是通过设计一个周期相似注意力原型网络(cycle - similarity Attention Prototype Network, CRAPNet)来解决医学图像分割任务的第一次尝试,该网络可以保留图像特征之间的空间相关性,并顺利地将其纳入传统的原型网络中。
  • 提出了一种具有内置循环相似模块的新型非局部块,可将其链接在一起并用作drop-in模块。
  • 在两种不同的医学成像数据集(如腹部MRI和腹部CT)上进行的大量实验表明了我们提出的方法的有效性。

640.png

Fig. 2. 图2:(a)将骨干网提取的特征首先输入到每个分支的5个支持查询注意块,其中注意块g、φ、θ为1 × 1 × 1卷积运算。θ和φ之间的CRM模块利用了周期相似机制。(b) cycle - similarity首先计算φ和σ卷积后支持特征图和查询特征图之间的矩阵乘法。然后,对于支持特征图中的像素i,通过查找矩阵在查询特征中找到最相似的像素j *。对于j *,也可以找到最相似的像素i *。最后,计算特征x is与x i * s之间的余弦相似度,并采用softmax函数返回像素i的权值。

相关文章
|
自然语言处理
PubMedBERT:生物医学自然语言处理领域的特定预训练模型
今年大语言模型的快速发展导致像BERT这样的模型都可以称作“小”模型了。Kaggle LLM比赛LLM Science Exam 的第四名就只用了deberta,这可以说是一个非常好的成绩了。所以说在特定的领域或者需求中,大语言模型并不一定就是最优的解决方案,“小”模型也有一定的用武之地,所以今天我们来介绍PubMedBERT,它使用特定领域语料库从头开始预训练BERT,这是微软研究院2022年发布在ACM的论文。
521 1
|
机器学习/深度学习 计算机视觉
【小样本图像分割-1】PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment
本文介绍了ICCV 2019的一篇关于小样本图像语义分割的论文《PANet: Few-Shot Image Semantic Segmentation With Prototype Alignment》。PANet通过度量学习方法,从支持集中的少量标注样本中学习类的原型表示,并通过非参数度量学习对查询图像进行分割。该方法在PASCAL-5i数据集上取得了显著的性能提升,1-shot和5-shot设置下的mIoU分别达到48.1%和55.7%。PANet还引入了原型对齐正则化,以提高模型的泛化能力。
512 0
【小样本图像分割-1】PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment
|
9月前
|
关系型数据库 MySQL 数据库
图解MySQL【日志】——两阶段提交
两阶段提交是为了解决Redo Log和Binlog日志在事务提交时可能出现的半成功状态,确保两者的一致性。它分为准备阶段和提交阶段,通过协调者和参与者协作完成。准备阶段中,协调者向所有参与者发送准备请求,参与者执行事务并回复是否同意提交;提交阶段中,若所有参与者同意,则协调者发送提交请求,否则发送回滚请求。MySQL通过这种方式保证了分布式事务的一致性,并引入组提交机制减少磁盘I/O次数,提升性能。
673 4
图解MySQL【日志】——两阶段提交
|
机器学习/深度学习 数据采集 人工智能
探索AI在软件测试中的应用与挑战
【2月更文挑战第25天】 随着人工智能(AI)技术的迅猛发展,其在软件测试领域的应用逐渐深入。AI不仅改变了传统测试流程,提高了测试效率和质量,也引入了新的挑战。本文将详细探讨AI在软件测试中的具体应用,包括智能化测试用例生成、缺陷预测、自动化测试执行等,并分析当前面临的主要挑战,如数据质量、模型泛化能力和工具集成等问题。通过实例分析和研究展望,本文旨在为软件测试专业人士提供一个关于AI技术融合的全面视角。
|
10月前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
12046 46
|
开发者 iOS开发 MacOS
【干货】玩转PyCharm
【干货】玩转PyCharm
|
机器学习/深度学习 编解码 定位技术
【小样本图像分割-2】UniverSeg: Universal Medical Image Segmentation
UniverSeg是一种用于医学图像分割的小样本学习方法,通过大量医学图像数据集的训练,实现了对未见过的解剖结构和任务的泛化能力。该方法引入了CrossBlock机制,以支持集和查询集之间的特征交互为核心,显著提升了分割精度。实验结果显示,UniverSeg在多种任务上优于现有方法,特别是在任务多样性和支持集多样性方面表现出色。未来,该方法有望扩展到3D模型和多标签分割,进一步提高医学图像处理的灵活性和效率。
329 0
【小样本图像分割-2】UniverSeg: Universal Medical Image Segmentation
|
机器学习/深度学习 编解码 算法
【小样本图像分割-4】nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation
《nnU-Net: 自适应框架用于基于U-Net的医学图像分割》是一篇2018年的论文,发表在Nature上。该研究提出了一种自适应的医学图像分割框架nnU-Net,能够自动调整模型的超参数以适应不同的数据集。通过2D和3D U-Net及级联U-Net的组合,nnU-Net在10个医学分割数据集上取得了卓越的性能,无需手动调整。该方法强调数据增强、预处理和训练策略等技巧,为医学图像分割提供了一个强大的解决方案。
531 0
【小样本图像分割-4】nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation
|
分布式计算 Hadoop 大数据
Hadoop与Spark在大数据处理中的对比
【7月更文挑战第30天】Hadoop和Spark在大数据处理中各有优势,选择哪个框架取决于具体的应用场景和需求。Hadoop适合处理大规模数据的离线分析,而Spark则更适合需要快速响应和迭代计算的应用场景。在实际应用中,可以根据数据处理的需求、系统的可扩展性、成本效益等因素综合考虑,选择适合的框架进行大数据处理。

热门文章

最新文章