jvm性能调优实战 - 27亿级数据量的实时分析引擎,为啥频繁发生Full GC

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: jvm性能调优实战 - 27亿级数据量的实时分析引擎,为啥频繁发生Full GC

Pre

这个案例将会给大家分析一个频繁Full GC的真实生产案例,我们会延续之前讲过的一个案例,继续进行分析,下面先把之前的案例贴出来放在下文。

先给大家说一下这个系统的案例背景,大概来说是一个数据计算系统,日处理数据量在上亿的规模。

为了方便大家集中注意力理解这个系统的生产环境的JVM相关的东西,所以对系统本身就简化说明了。

简单来说,这个系统就是会不停的从MySQL数据库以及其他数据源里提取大量的数据加载到自己的JVM内存里来进行计算处理,如下图所示。

这个数据计算系统会不停的通过SQL语句和其他方式,从各种数据存储中提取数据到内存中来进行计算,大致当时的生产负载是每分钟大概需要执行500次数据提取和计算的任务。

但是这是一套分布式运行的系统,所以生产环境部署了多台机器,每台机器大概每分钟负责执行100次数据提取和计算的任务。

每次会提取大概1万条左右的数据到内存里来计算,平均每次计算大概需要耗费10秒左右的时间,然后每台机器是4核8G的配置,JVM内存给了4G,其中新生代和老年代分别是1.5G的内存空间,大家看下图。


新生代多久会塞满

现在明确了一些核心数据,接着我们来看看这个系统到底多快会塞满新生代的内存空间?

既然这个系统每台机器上部署的实例,每分钟会执行100次数据计算任务,每次是1万条数据需要计算10秒的时间,那么我们来看看每次1万条数据大概会占用多大的内存空间?

这里每条数据都是比较大的,大概每条数据包含了平均20个字段,可以认为平均每条数据在1KB左右的大小。那么每次计算任务的1万条数据就对应了10MB的大小。

所以大家此时可以思考一下,如果新生代是按照8:1:1的比例来分配Eden和两块Survivor的区域,那么大体上来说,Eden区就是1.2GB,每块Survivor区域在100MB左右,如下图。

基本上按照这个内存大小而言,大家会发现,每次执行一个计算任务,就会在Eden区里分配10MB左右的对象,那么一分钟大概对应100次计算任务,其实基本上一分钟过后,Eden区里就全是对象,基本就全满了。

所以说, 新生代里的Eden区,基本上1分钟左右就迅速填满了。


触发Minor GC的时候会有多少对象进入老年代?

此时假设新生代的Eden区在1分钟过后都塞满对象了,然后在接着继续执行计算任务的时候,势必会导致需要进行Minor GC回收一部分的垃圾对象。

那么上篇文章给大家讲过这里在执行Minor GC之前会先进行的检查。

首先第一步,先看看老年代的可用内存空间是否大于新生代全部对象?看下图,此时老年代是空的,大概有1.5G的可用内存空间,新生代的Eden区大概算他有1.2G的对象好了。

此时会发现老年代的可用内存空间有1.5GB,新生代的对象总共有1.2GB,即使一次Minor GC过后,全部对象都存活,老年代也能放的下的,那么此时就会直接执行Minor GC了。

那么此时Eden区里有多少对象还是存活的,无法被垃圾回收呢?

大家可以考虑一下之前说的那个点,每个计算任务1万条数据需要计算10秒钟,所以假设此时80个计算任务都执行结束了,但是还有20个计算任务共计200MB的数据还在计算中

那么此时就是200MB的对象是存活的,不能被垃圾回收掉,然后有1GB的对象是可以垃圾回收的,大家看下图。

此时一次Minor GC就会回收掉1GB的对象,然后200MB的对象能放入Survivor区吗?

**不能!**因为任何一块Survivor区实际上就100MB的空间,此时就会通过空间担保机制,让这200MB对象直接进入老年代去,占用里面200MB内存空间,然后Eden区就清空了,大家看下图。


系统运行多久,老年代大概就会填满?

那么大家想一下,这个系统大概运行多久,老年代会填满呢?

按照上述计算,每分钟都是一个轮回,大概算下来是每分钟都会把新生代的Eden区填满,然后触发一次Minor GC,然后大概都会有200MB左右的数据进入老年代。

那么大家可以想一下,假设现在2分钟运行过去了,此时老年代已经有400MB内存被占用了,只有1.1GB的内存可用,此时如果第3分钟运行完毕,又要进行Minor GC会做什么检查呢?

此时会先检查老年代可用空间是否大于新生代全部对象!

此时老年代可用空间1.1GB,新生代对象有1.2GB,那么此时假设一次Minor GC过后新生代对象全部存活,老年代是放不下的,那么此时就得看看一个参数是否打开了 。

如果“-XX:-HandlePromotionFailure”参数被打开了,当然一般都会打开其实,此时会进入第二步检查,就是看看老年代可用空间是否大于历次Minor GC过后进入老年代的对象的平均大小。

我们已经计算过了,大概每分钟会执行一次Minor GC,每次大概200MB对象会进入老年代。

那么此时发现老年代的1.1GB空间,是大于每次Minor GC后平均200MB对象进入老年代的大小的,所以基本可以推测,本次Minor GC后大概率还是有200MB对象进入老年代,1.1G可用空间是足够的。

所以此时就会放心执行一次Minor GC,然后又是200MB对象进入老年代。

转折点大概在运行了7分钟过后,7次Minor GC执行过后,大概1.4G对象进入老年代,老年代剩余空间就不到100MB了,几乎快满了,如下图。


系统运行多久,老年代会触发1次Full GC?

大概在第8分钟运行结束的时候,新生代又满了,执行Minor GC之前进行检查,此时发现老年代只有100MB内存空间了,比之前每次Minor GC后进入老年代的200MB对象要小,此时就会直接触发一次Full GC。

Full GC会把老年代的垃圾对象都给回收了,假设此时老年代被占据的1.4G空间里,全部都是可以回收的对象,那么此时一次性就会把这些对象都给回收了,如下图。

然后接着就会执行Minor GC,此时Eden区情况,200MB对象再次进入老年代,之前的Full GC就是为这些新生代本次Minor GC要进入老年代的对象准备的,如下图。

按照这个运行模型,基本上平均就是七八分钟一次Full GC,这个频率就相当高了。

因为每次Full GC速度都是很慢的,性能很差


该案例应该如何进行JVM优化?

相信通过这个案例,大家结合图一路看下来,对新生代和老年代如何配合使用,然后什么情况下触发Minor GC和Full GC,什么情况下会导致频繁的Minor GC和Full GC,大家都有了更加深层次和透彻的理解了。

对这个系统,其实要优化也是很简单的,因为这个系统是数据计算系统,每次Minor GC的时候,必然会有一批数据没计算完毕,但是按照现有的内存模型,最大的问题,其实就是每次Survivor区域放不下存活对象。

所以当时我们就是对生产系统进行了调整,增加了新生代的内存比例,3GB左右的堆内存,其中2GB分配给新生代,1GB留给老年代,这样Survivor区大概就是200MB,每次刚好能放得下Minor GC过后存活的对象了,如下图所示。

只要每次Minor GC过后200MB存活对象可以放Survivor区域,那么等下一次Minor GC的时候,这个Survivor区的对象对应的计算任务早就结束了,都是可以回收的

此时比如Eden区里1.6GB空间被占满了,然后Survivor1区里有200MB上一轮 Minor GC后存活的对象,如下图。

然后此时执行Minor GC,就会把Eden区里1.4GB对象回收掉,Survivor1区里的200MB对象也会回收掉,然后Eden区里剩余的200MB存活对象会放入Survivor2区里,如下图。

以此类推,基本上就很少对象会进入老年代中,老年代里的对象也不会太多的。

通过这个分析和优化,定时我们成功的把生产系统的老年代Full GC的频率从几分钟一次降低到了几个小时一次,大幅度提升了系统的性能,避免了频繁Full GC对系统运行的影响。


如果该系统的工作负载再次扩大10倍呢?

相信大家之前都看过这个案例了,这次正好借着这个机会再次重看一遍,加深一下印象,同时我们接着说当时那个生产系统在每日处理1亿数据之后,随着一段时间过后,工作负载再次扩大10倍的情景。

如果工作负载扩大10倍,那么大家参照上图来看,此时会导致每秒钟要加载100MB的数据到内存里去,对于1.6G的Eden而言,10多秒就会迅速塞满,此时就会触发Young GC。

但是之前说过,你每次加载一批数据到内存里去,一般要处理10秒以上的时间才能计算完毕,在计算完毕之前这些数据是不能被回收的。

所以如果你10多秒就触发一次Young GC,直接导致的后果就是,此时可能能回收掉的垃圾也就几百MB而言,可能1GB的对象都是无法回收的,大家仔细理解一下这个意思。

此时就会导致每隔10多秒,就有1GB的数据进入老年代中,而老年代之前给大家说过,也就1GB左右的空间而已,即使勉强让你放下了,那么下一次过10多秒之后,又会放1GB的对象到老年代,此时必然会提前触发Full GC去回收老年代里的1GB的对象,然后再让你把这次Young GC后存活的1GB对象放入老年代。

这就是当时我们遇到的真实生产场景,基本上一台4核8G的机器,每分钟要触发二三次Full GC,对系统性能造成了巨大的影响,简直是可怕至极。


使用大内存机器来优化上述场景

所以但是针对这个问题,因为考虑是计算类的系统,也是非常的吃内存的,所以同样是更换成了每台机器都是16核32G的高配置机器

这样的话,Eden基本上空间会扩大10倍,比如有16GB。

那么此时按照每秒加载100MB的数据到内存里进行计算,要2分钟左右才会触发一次Young GC,因为降低了Young GC的频率,所以每次Young GC的时候存活对象大概也就几百MB而已,不会超过1GB。

当时给Survivor区域分配的是每个Survivor有2GB内存,所以每次Young GC过后的存活对象可以轻松放入Survivor区域中,不会进入老年代。这就完美的通过提升机器配置的方式,解决了频繁Young GC和Full GC的问题。

很多同学可能会提问了,那么针对大内存机器,需要用G1来减少每次Young GC的停顿时间吗?

答案是:不用。因为这是一个后台自动进行计算的系统,他不是直接面向用户的系统,所以哪怕每隔2分钟一次Young GC,一次要停顿1秒钟,也对系统几乎没任何影响。


总结

这篇文章接着之前的案例,让大家看了一下,1亿数据量级下的系统部署4核8G的机器,Full GC为何频繁发生,如何优化?10亿量级下的系统部署在4核8G的机器上,Full GC会发生的有多么的恐怖,如何通过提升机器配置来优化?

相信大家仔细看完这个案例,多看几遍,透彻理解了,多频繁Full GC问题就彻底理解了。


思考

  • 看看你们线上系统一般每隔多长时间发生一次Full GC?
  • 每次Full GC持续多久?

对你们系统的性能有影响吗?


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2天前
|
缓存 算法 Java
JVM实战—4.JVM垃圾回收器的原理和调优
本文详细探讨了JVM垃圾回收机制,包括新生代ParNew和老年代CMS垃圾回收器的工作原理与优化方法。内容涵盖ParNew的多线程特性、默认线程数设置及适用场景,CMS的四个阶段(初始标记、并发标记、重新标记、并发清理)及其性能分析,以及如何通过合理分配内存区域、调整参数(如-XX:SurvivorRatio、-XX:MaxTenuringThreshold等)来优化垃圾回收。此外,还结合电商大促案例,分析了系统高峰期的内存使用模型,并总结了YGC和FGC的触发条件与优化策略。最后,针对常见问题进行了汇总解答,强调了基于系统运行模型进行JVM参数调优的重要性。
JVM实战—4.JVM垃圾回收器的原理和调优
|
3天前
|
消息中间件 Java 应用服务中间件
JVM实战—2.JVM内存设置与对象分配流转
本文详细介绍了JVM内存管理的相关知识,包括:JVM内存划分原理、对象分配与流转、线上系统JVM内存设置、JVM参数优化、问题汇总。
JVM实战—2.JVM内存设置与对象分配流转
|
2天前
|
消息中间件 存储 算法
JVM实战—3.JVM垃圾回收的算法和全流程
本文详细介绍了JVM内存管理与垃圾回收机制,涵盖以下内容:对象何时被垃圾回收、垃圾回收算法及其优劣、新生代和老年代的垃圾回收算法、Stop the World问题分析、核心流程梳理。
JVM实战—3.JVM垃圾回收的算法和全流程
|
3天前
|
消息中间件 Java 应用服务中间件
JVM实战—1.Java代码的运行原理
本文介绍了Java代码的运行机制、JVM类加载机制、JVM内存区域及其作用、垃圾回收机制,并汇总了一些常见问题。
JVM实战—1.Java代码的运行原理
|
1天前
|
消息中间件 算法 Java
JVM实战—5.G1垃圾回收器的原理和调优
本文详细解析了G1垃圾回收器的工作原理及其优化方法。首先介绍了G1通过将堆内存划分为多个Region实现分代回收,有效减少停顿时间,并可通过参数设置控制GC停顿时长。接着分析了G1相较于传统GC的优势,如停顿时间可控、大对象不进入老年代等。还探讨了如何合理设置G1参数以优化性能,包括调整新生代与老年代比例、控制GC频率及避免Full GC。最后结合实际案例说明了G1在大内存场景和对延迟敏感业务中的应用价值,同时解答了关于内存碎片、Region划分对性能影响等问题。
|
6天前
|
存储 缓存 算法
JVM简介—1.Java内存区域
本文详细介绍了Java虚拟机运行时数据区的各个方面,包括其定义、类型(如程序计数器、Java虚拟机栈、本地方法栈、Java堆、方法区和直接内存)及其作用。文中还探讨了各版本内存区域的变化、直接内存的使用、从线程角度分析Java内存区域、堆与栈的区别、对象创建步骤、对象内存布局及访问定位,并通过实例说明了常见内存溢出问题的原因和表现形式。这些内容帮助开发者深入理解Java内存管理机制,优化应用程序性能并解决潜在的内存问题。
JVM简介—1.Java内存区域
|
2月前
|
存储 设计模式 监控
快速定位并优化CPU 与 JVM 内存性能瓶颈
本文介绍了 Java 应用常见的 CPU & JVM 内存热点原因及优化思路。
655 166
|
5天前
|
缓存 监控 算法
JVM简介—2.垃圾回收器和内存分配策略
本文介绍了Java垃圾回收机制的多个方面,包括垃圾回收概述、对象存活判断、引用类型介绍、垃圾收集算法、垃圾收集器设计、具体垃圾回收器详情、Stop The World现象、内存分配与回收策略、新生代配置演示、内存泄漏和溢出问题以及JDK提供的相关工具。
JVM简介—2.垃圾回收器和内存分配策略
|
4月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
805 1
|
13天前
|
存储 设计模式 监控
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?