jvm性能调优实战 - 24模拟因动态年龄判断对象进入老年代的场景

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: jvm性能调优实战 - 24模拟因动态年龄判断对象进入老年代的场景

Pre

上一篇文章我们已经带着大家初步分析了一次Young GC的日志,相信大家已经完全掌握了如何结合GC日志去分析一次Young GC执行的全过程。

这篇文章我们接着之前的案例继续来做实验,动手体验一下对象是如何从新生代进入老年代的。


动态年龄判定规则

之前我们给大家总结过对象进入老年代的4个常见的时机:

  • 躲过15次gc,达到15岁高龄之后进入老年代;
  • 动态年龄判定规则,如果Survivor区域内年龄1+年龄2+年龄3+年龄n的对象总和大于Survivor区的50%,此时年龄n以上的对象会进入老年代,不一定要达到15岁
  • 如果一次Young GC后存活对象太多无法放入Survivor区,此时直接计入老年代
  • 大对象直接进入老年代

首先我们先通过代码给大家模拟出来最常见的一种进入老年代的情况,如果Survivor区域内年龄1+年龄2+年龄3+年龄n的对象总和大于Survivor区的50%,此时年龄n以上的对象会进入老年代,也就是所谓的动态年龄判定规则。

先来看看我们这次示例程序的JVM参数:

“-XX:NewSize=10485760 -XX:MaxNewSize=10485760 -XX:InitialHeapSize=20971520 -XX:MaxHeapSize=20971520 -XX:SurvivorRatio=8  -XX:MaxTenuringThreshold=15 -XX:PretenureSizeThreshold=10485760 -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:gc.log”

在这些参数里我们注意几点,

  • 新生代 “-XX:NewSize”设置为10MB了
  • -XX:SurvivorRatio=8 Eden区是8MB,每个Survivor区是1MB,
  • -XX:InitialHeapSize=20971520 -XX:MaxHeapSize=20971520 Java堆总大小是20MB,老年代是10MB (总堆大小20M - 新生代10M)
  • -XX:PretenureSizeThreshold=10485760 大对象必须超过10MB才会直接进入老年代
  • -XX:MaxTenuringThreshold=15设置了只要对象年龄达到15岁才会直接进入老年代。

一切准备就绪,先看看我们当前的内存分配情况,如下图,然后接下来我们开始来看看我们的示例代码。


动态年龄判定规则的部分示例代码

研究jvm运行过程,一定要一步一步调试代码,上面只是我们例子的部分代码,但是我们需要先运行部分代码,通过gc日志来分析这部分代码执行过后jvm中的对象分配情况。


部分示例代码运行后产生的gc日志

接着我们把上述示例代码以及我们给出的JVM参数配合起来运行,此时会看到如下的GC日志,接着我们就开始一步一步分析一下这部分代码运行后的gc日志。

0.297: [GC (Allocation Failure) 0.297: [ParNew: 7260K->715K(9216K), 0.0012641 secs] 7260K->715K(19456K), 0.0015046 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
Heap
par new generation   total 9216K, used 2845K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)
 eden space 8192K,  26% used [0x00000000fec00000, 0x00000000fee14930, 0x00000000ff400000)
 from space 1024K,  69% used [0x00000000ff500000, 0x00000000ff5b2e10, 0x00000000ff600000)
 to   space 1024K,   0% used [0x00000000ff400000, 0x00000000ff400000, 0x00000000ff500000)
concurrent mark-sweep generation total 10240K, used 0K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
Metaspace       used 2782K, capacity 4486K, committed 4864K, reserved 1056768K
 class space    used 300K, capacity 386K, committed 512K, reserved 1048576K

分析一下

在这里连续创建了3个2MB的数组,最后还把局部变量array1设置为了null,所以此时的内存如下图所示:

接着执行了这行代码:byte[] array2 = new byte[128 * 1024];。此时会在Eden区创建一个128KB的数组同时由array2变量来引用,如下图。

然后会执行下面的代码:byte[] array3 = new byte[2 * 1024 * 1024];

此时希望在Eden区再次分配一个2MB的数组,大家觉得可行吗?

因为此时Eden区里已经有3个2MB的数组和1个128KB的数组,大小都超过6MB了,Eden总共才8MB,此时是不可能让你创建2MB的数组的。

因此此时一定会触发一次Young GC,接着我们开始看GC日志。

ParNew: 7260K->715K(9216K), 0.0012641 secs

这行日志清晰表明了,在GC之前年轻代占用了7260KB的内存,这里大概就是6MB的3个数组 + 128KB的1个数组 + 几百KB的一些未知对象

如下图所示:

接着看这里,7260K->715K(9216K),一次Young GC过后,剩余的存活对象大概是715KB,大家还记得我们上篇文章分析的GC日志吗?

之前就说过大概年轻代刚开始会有512KB左右的未知对象,此时再加上我们自己的128KB的数组,大家想想,是不是差不多就是700KB?

接着看GC日志如下:

par new generation   total 9216K, used 2845K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)
 eden space 8192K,  26% used [0x00000000fec00000, 0x00000000fee14930, 0x00000000ff400000)
 from space 1024K,  69% used [0x00000000ff500000, 0x00000000ff5b2e10, 0x00000000ff600000)
 to   space 1024K,   0% used [0x00000000ff400000, 0x00000000ff400000, 0x00000000ff500000)
concurrent mark-sweep generation total 10240K, used 0K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)

从上面的日志可以清晰看出,此时From Survivor区域被占据了69%的内存,大概就是700KB左右,这就是一次Young GC后存活下来的对象,他们都进入From Survivor区了。

同时Eden区域内被占据了26%的空间,大概就是2MB左右,这就是byte[] array3 = new byte[2 * 1024 * 1024];,这行代码在gc过后分配在Eden区域内的数组

如下图所示:

那么大家思考一个问题,现在Survivor From区里的那700kb的对象,是几岁呢?

答案是:1岁

他熬过一次gc,年龄就会增长1岁。而且此时Survivor区域总大小是1MB,此时Survivor区域中的存活对象已经有700KB了,绝对超过了50%。


完善示例代码

接着我们把示例代码给完善一下,变成上述的样子,我们要触发出来第二次Young GC,然后看看Survivor区域内的动态年龄判定规则能否生效。

先看下面几行代码:

这几行代码运行过后,实际上会接着分配2个2MB的数组,然后再分配一个128KB的数组,最后是让array3变量指向null,如下图所示。

此时接着会运行下面的代码:byte[] array4 = new byte[2 * 1024 * 1024];

这个时候,大家会发现,Eden区如果要再次放一个2MB数组下去,是放不下的了,所以此时必然会触发一次Young GC。

大家使用上述的JVM参数运行这段程序会看到如下的GC日志:

0.269: [GC (Allocation Failure) 0.269: [ParNew: 7260K->713K(9216K), 0.0013103 secs] 7260K->713K(19456K), 0.0015501 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
0.271: [GC (Allocation Failure) 0.271: [ParNew: 7017K->0K(9216K), 0.0036521 secs] 7017K->700K(19456K), 0.0037342 secs] [Times: user=0.06 sys=0.00, real=0.00 secs]
Heap
par new generation   total 9216K, used 2212K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)
 eden space 8192K,  27% used [0x00000000fec00000, 0x00000000fee290e0, 0x00000000ff400000)
 from space 1024K,   0% used [0x00000000ff400000, 0x00000000ff400000, 0x00000000ff500000)
 to   space 1024K,   0% used [0x00000000ff500000, 0x00000000ff500000, 0x00000000ff600000)
concurrent mark-sweep generation total 10240K, used 700K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
Metaspace       used 2782K, capacity 4486K, committed 4864K, reserved 1056768K
 class space    used 300K, capacity 386K, committed 512K, reserved 1048576K

GC日志分析

首先第一次GC的日志如下:

0.269: [GC (Allocation Failure) 0.269: [ParNew: 7260K->713K(9216K), 0.0013103 secs] 7260K->713K(19456K), 0.0015501 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 

这个过程刚才我们分析过了。

接着第二次GC的日志如下:

0.271: [GC (Allocation Failure) 0.271: [ParNew: 7017K->0K(9216K), 0.0036521 secs] 7017K->700K(19456K), 0.0037342 secs] [Times: user=0.06 sys=0.00, real=0.00 secs] 

第二次触发Yuong GC,就是我们上述代码执行的时候,此时大家发现ParNew: 7017K->0K(9216K)

这行日志表明,这次GC过后,年轻代直接就没有对象了,也就是说没有任何存活对象,你觉得可能吗?

要是这么简单的想,绝对是侮辱自己的智商了,大家还记得array2这个变量一直引用着一个128KB的数组,他绝对是存活对象,还有那500多KB的未知对象,此时都去哪里了呢?

首先我们先看看上面的图,在Eden区里有3个2MB的数组和1个128KB的数组,这绝对是会被回收掉的,如下图所示。

接着其实此时会发现Survivor区域中的对象都是存活的,而且总大小超过50%了,而且年龄都是1岁

此时根据动态年龄判定规则:年龄1+年龄2+年龄n的对象总大小超过了Survivor区域的50%,年龄n以上的对象进入老年代。

当然这里的对象都是年龄1的,所以直接全部进入老年代了,如下图。

大家看下面的日志可以确认这一点:

concurrent mark-sweep generation total 10240K, used 700K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)

CMS管理的老年代,此时使用空间刚好是700KB,证明此时Survivor里的对象触发了动态年龄判定规则,虽然没有达到15岁,但是全部进入老年代了。

包括我们自己的那个array2变量一直引用的128KB的数组。

然后array4变量引用的那个2MB的数组,此时就会分配到Eden区域中,如下图所示。

此时大家看下面的日志:

eden space 8192K,  27% used [0x00000000fec00000, 0x00000000fee290e0, 0x00000000ff400000)

这里就说明Eden区当前就是有一个2MB的数组。

然后再看下面的日志:

from space 1024K,   0% used [0x00000000ff400000, 0x00000000ff400000, 0x00000000ff500000)
 to   space 1024K,   0% used [0x00000000ff500000, 0x00000000ff500000, 0x00000000ff600000)

两个Survivor区域都是空的,因为之前存活的700KB的对象都进入老年代了,所以当然现在Survivor里都是空的了。


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
29天前
|
监控 架构师 Java
Java虚拟机调优的艺术:从入门到精通####
本文作为一篇深入浅出的技术指南,旨在为Java开发者揭示JVM调优的神秘面纱,通过剖析其背后的原理、分享实战经验与最佳实践,引领读者踏上从调优新手到高手的进阶之路。不同于传统的摘要概述,本文将以一场虚拟的对话形式,模拟一位经验丰富的架构师向初学者传授JVM调优的心法,激发学习兴趣,同时概括性地介绍文章将探讨的核心议题——性能监控、垃圾回收优化、内存管理及常见问题解决策略。 ####
|
2月前
|
监控 Java 编译器
Java虚拟机调优指南####
本文深入探讨了Java虚拟机(JVM)调优的精髓,从内存管理、垃圾回收到性能监控等多个维度出发,为开发者提供了一系列实用的调优策略。通过优化配置与参数调整,旨在帮助读者提升Java应用的运行效率和稳定性,确保其在高并发、大数据量场景下依然能够保持高效运作。 ####
35 1
|
2月前
|
存储 算法 Java
JVM进阶调优系列(10)敢向stop the world喊卡的G1垃圾回收器 | 有必要讲透
本文详细介绍了G1垃圾回收器的背景、核心原理及其回收过程。G1,即Garbage First,旨在通过将堆内存划分为多个Region来实现低延时的垃圾回收,每个Region可以根据其垃圾回收的价值被优先回收。文章还探讨了G1的Young GC、Mixed GC以及Full GC的具体流程,并列出了G1回收器的核心参数配置,帮助读者更好地理解和优化G1的使用。
|
2月前
|
监控 Java 测试技术
Elasticsearch集群JVM调优垃圾回收器的选择
Elasticsearch集群JVM调优垃圾回收器的选择
59 1
|
2月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
356 1
|
3月前
|
存储 安全 Java
jvm 锁的 膨胀过程?锁内存怎么变化的
【10月更文挑战第3天】在Java虚拟机(JVM)中,`synchronized`关键字用于实现同步,确保多个线程在访问共享资源时的一致性和线程安全。JVM对`synchronized`进行了优化,以适应不同的竞争场景,这种优化主要体现在锁的膨胀过程,即从偏向锁到轻量级锁,再到重量级锁的转变。下面我们将详细介绍这一过程以及锁在内存中的变化。
48 4
|
9天前
|
存储 Java 程序员
【JVM】——JVM运行机制、类加载机制、内存划分
JVM运行机制,堆栈,程序计数器,元数据区,JVM加载机制,双亲委派模型
|
29天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
2月前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80
|
2月前
|
Java
JVM运行时数据区(内存结构)
1)虚拟机栈:每次调用方法都会在虚拟机栈中产生一个栈帧,每个栈帧中都有方法的参数、局部变量、方法出口等信息,方法执行完毕后释放栈帧 (2)本地方法栈:为native修饰的本地方法提供的空间,在HotSpot中与虚拟机合二为一 (3)程序计数器:保存指令执行的地址,方便线程切回后能继续执行代码
25 3