Apache Kafka-初体验Kafka(04)-Java客户端操作Kafka

简介: Apache Kafka-初体验Kafka(04)-Java客户端操作Kafka


操作步骤

Maven依赖

核心依赖 kafka-clients

<dependency>
          <groupId>org.apache.kafka</groupId>
           <artifactId>kafka-clients</artifactId>
           <version>1.1.0</version>
       </dependency>

生产者

package com.artisan.kafkademo.producer;
import com.alibaba.fastjson.JSON;
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
/**
 * @author 小工匠
 * @version v1.0
 * @create 2019-11-18 0:17
 * @motto show me the code ,change the word
 * @blog https://artisan.blog.csdn.net/
 * @description
 **/
public class MsgProducer {
    public static void main(String[] args) throws InterruptedException {
        // ---------------参数设置---------------BEGIN
        Properties properties = new Properties();
        // broker 信息
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.18.130:9092,192.168.18.131:9092,192.168.18.132:9092");
        /*
         发出消息持久化机制参数
        (1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。
                     性能最高,但是最容易丢消息。
        (2)acks=1: 至少要等待leader已经成功将数据写入本地log,
                     但是不需要等待所有follower是否成功写入。就可以继续发送下一条消息。
                     这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失。
        (3)acks=‐1或all: 这意味着leader需要等待所有备份(min.insync.replicas配置的备份个数)都成功写入日志,
                这种策略会保证只要有一个备份存活就不会丢失数据。
                这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。
         */
        properties.put(ProducerConfig.ACKS_CONFIG, "1");
        // 发送失败会重试,默认重试间隔100ms,重试能保证消息发送的可靠性,
        // 但是也可能造成消息重复发送,比如网络抖动,所以需要在接收者那边做好消息接收的幂等性处理
        properties.put(ProducerConfig.RETRIES_CONFIG,3);
        // 重试间隔设置
        properties.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG,300);
        // /设置发送消息的本地缓冲区,
        // 如果设置了该缓冲区,消息会先发送到本地缓冲区,可以提高消息发送性能,默认值是33554432,即32MB
        properties.put(ProducerConfig.BUFFER_MEMORY_CONFIG,33554432);
        // kafka本地线程会从缓冲区取数据,批量发送到broker,
        // 设置批量发送消息的大小,默认值是16384,即16kb,就是说一个batch满了16kb就发送出去
        properties.put(ProducerConfig.BATCH_SIZE_CONFIG,16384);
        //默认值是0,意思就是消息必须立即被发送,但这样会影响性能
        //一般设置100毫秒左右,就是说这个消息发送完后会进入本地的一个batch,
        // 如果100毫秒内,这个batch满了16kb就会随batch一起被发送出去
        //如果100毫秒内,batch没满,那么也必须把消息发送出去,不能让消息的发送延迟时间太长
        properties.put(ProducerConfig.LINGER_MS_CONFIG,100);
        // 把发送的key从字符串序列化为字节数组
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
        //把发送消息value从字符串序列化为字节数组
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
        // ---------------参数设置---------------END
        // 使用properties实例化KafkaProducer
        Producer producer = new KafkaProducer(properties);
        final int messageNum = 5 ;
        final CountDownLatch countDownLatch = new CountDownLatch(messageNum);
        // 发送5条消息
        for (int i = 1; i <= messageNum; i++) {
            Order order = new Order(i, 100,66,987.99 + i);
            // 指定发送分区
            ProducerRecord<String,String> record = new ProducerRecord<String, String>("artisan-replicated-topic",
                    0,String.valueOf(order.getOrderId()), JSON.toJSONString(order));
            // 异步方式发送消息
            producer.send(record, new Callback() {
                public void onCompletion(RecordMetadata metadata, Exception exception) {
                    if (exception != null){
                        countDownLatch.countDown();
                        System.err.println("发送消息失败:" + exception.getStackTrace());
                    }
                    if (metadata != null){
                        countDownLatch.countDown();
                        System.out.println("异步方式发送消息结果: topic=" + metadata.topic()
                                + " , partition=" + metadata.partition()
                                + " , offset=" + metadata.offset());
                    }
                }
            });
        }
        // 等5秒钟,5秒钟后,执行后续的代码
        countDownLatch.await(5, TimeUnit.SECONDS);
        producer.close();
    }
   static class Order {
        private int orderId ;
        private int productId ;
        private int productNum;
        private double orderAmount ;
        public Order() {
        }
        public Order(int orderId, int productId, int productNum, double orderAmount) {
            this.orderId = orderId;
            this.productId = productId;
            this.productNum = productNum;
            this.orderAmount = orderAmount;
        }
        public int getOrderId() {
            return orderId;
        }
        public void setOrderId(int orderId) {
            this.orderId = orderId;
        }
        public int getProductId() {
            return productId;
        }
        public void setProductId(int productId) {
            this.productId = productId;
        }
        public int getProductNum() {
            return productNum;
        }
        public void setProductNum(int productNum) {
            this.productNum = productNum;
        }
        public double getOrderAmount() {
            return orderAmount;
        }
        public void setOrderAmount(double orderAmount) {
            this.orderAmount = orderAmount;
        }
    }
}

消费者

package com.artisan.kafkademo.consumer;
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.util.*;
/**
 * @author 小工匠
 * @version v1.0
 * @create 2019-11-18 23:51
 * @motto show me the code ,change the word
 * @blog https://artisan.blog.csdn.net/
 * @description
 **/
public class MsgConsumer {
    public static void main(String[] args) {
        // ---------------参数设置---------------BEGIN
        Properties props = new Properties();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.18.130:9092,192.168.18.131:9092,192.168.18.132:9092");
        // 消费分组名
        props.put(ConsumerConfig.GROUP_ID_CONFIG,"testGroup");
        // 是否自动提交offset
    /*props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
    // 自动提交offset的间隔时间
    props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG , "1000");*/
        //props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
    /*
    心跳时间,服务端broker通过心跳确认consumer是否故障,如果发现故障,就会通过心跳下发
    rebalance的指令给其他的consumer通知他们进行rebalance操作,这个时间可以稍微短一点
    */
        props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);
        //服务端broker多久感知不到一个consumer心跳就认为他故障了,默认是10秒
        props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);
        /*
        如果两次poll操作间隔超过了这个时间,broker就会认为这个consumer处理能力太弱,
        会将其踢出消费组,将分区分配给别的consumer消费
        */
        props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
        // 消费主题
        String topicName = "artisan-replicated-topic";
        consumer.subscribe(Arrays.asList(topicName));
        // 消费指定分区
        //consumer.assign(Arrays.asList(new TopicPartition(topicName, 0)));
        //消息回溯消费
        /*consumer.assign(Arrays.asList(new TopicPartition(topicName, 0)));
        *//*consumer.seekToBeginning(Arrays.asList(new TopicPartition(topicName, 0)));*//*
        //指定offset消费
        consumer.seek(new TopicPartition(topicName, 0), 10);
        //从指定时间点开始消费
        Map<TopicPartition, Long> map = new HashMap<TopicPartition, Long>();
        List<PartitionInfo> topicPartitions = consumer.partitionsFor(topicName);
        //从半小时前开始消费
        long fetchDataTime = new Date().getTime() - 1000 * 60 * 60;
        for (PartitionInfo par : topicPartitions) {
            map.put(new TopicPartition(topicName, par.partition()), fetchDataTime);
        }
        Map<TopicPartition, OffsetAndTimestamp> parMap = consumer.offsetsForTimes(map);
        for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry : parMap.entrySet()) {
            TopicPartition key = entry.getKey();
            OffsetAndTimestamp value = entry.getValue();
            if (key == null || value == null) continue;
            Long offset = value.offset();
            System.out.println("partition-" + key.partition() + "|offset-" + offset);
            System.out.println();
            //根据消费里的timestamp确定offset
            if (value != null) {
                //没有这行代码会导致下面的报错信息
                consumer.assign(Arrays.asList(key));
                consumer.seek(key, offset);
            }
        }
*/
        while (true) {
            /*
             * poll() API 是拉取消息的长轮询,主要是判断consumer是否还活着,只要我们持续调用poll(),
             * 消费者就会存活在自己所在的group中,并且持续的消费指定partition的消息。
             * 底层是这么做的:消费者向server持续发送心跳,如果一个时间段(session.
             * timeout.ms)consumer挂掉或是不能发送心跳,这个消费者会被认为是挂掉了,
             * 这个Partition也会被重新分配给其他consumer
             */
            ConsumerRecords<String, String> records = consumer.poll(1000);
            for (ConsumerRecord<String, String> record : records) {
                System.out.printf("收到消息:offset = %d, key = %s, value = %s%n", record.offset(), record.key(),
                        record.value());
            }
            if (records.count() > 0) {
                // 提交offset
                consumer.commitSync();
            }
        }
    }
}


相关文章
|
1月前
|
消息中间件 安全 Kafka
Apache Kafka安全加固指南:保护你的消息传递系统
【10月更文挑战第24天】在现代企业环境中,数据的安全性和隐私保护至关重要。Apache Kafka作为一款广泛使用的分布式流处理平台,其安全性直接影响着业务的稳定性和用户数据的安全。作为一名资深的Kafka使用者,我深知加强Kafka安全性的重要性。本文将从个人角度出发,分享我在实践中积累的经验,帮助读者了解如何有效地保护Kafka消息传递系统的安全性。
87 7
|
1月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
83 5
|
1月前
|
消息中间件 存储 监控
构建高可用性Apache Kafka集群:从理论到实践
【10月更文挑战第24天】随着大数据时代的到来,数据传输与处理的需求日益增长。Apache Kafka作为一个高性能的消息队列服务,因其出色的吞吐量、可扩展性和容错能力而受到广泛欢迎。然而,在构建大规模生产环境下的Kafka集群时,保证其高可用性是至关重要的。本文将从个人实践经验出发,详细介绍如何构建一个高可用性的Kafka集群,包括集群规划、节点配置以及故障恢复机制等方面。
84 4
|
1月前
|
消息中间件 监控 大数据
优化Apache Kafka性能:最佳实践与调优策略
【10月更文挑战第24天】作为一名已经对Apache Kafka有所了解并有实际使用经验的开发者,我深知在大数据处理和实时数据流传输中,Kafka的重要性不言而喻。然而,在面对日益增长的数据量和业务需求时,如何保证系统的高性能和稳定性成为了摆在我们面前的一个挑战。本文将从我的个人视角出发,分享一些关于如何通过合理的配置和调优来提高Kafka性能的经验和建议。
84 4
|
22天前
|
消息中间件 Java Kafka
什么是Apache Kafka?如何将其与Spring Boot集成?
什么是Apache Kafka?如何将其与Spring Boot集成?
53 5
|
24天前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
36 1
|
1月前
|
消息中间件 缓存 Java
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
零拷贝技术 Zero-Copy 是指计算机执行操作时,可以直接从源(如文件或网络套接字)将数据传输到目标缓冲区, 而不需要 CPU 先将数据从某处内存复制到另一个特定区域,从而减少上下文切换以及 CPU 的拷贝时间。
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
|
1月前
|
消息中间件 存储 负载均衡
Apache Kafka核心概念解析:生产者、消费者与Broker
【10月更文挑战第24天】在数字化转型的大潮中,数据的实时处理能力成为了企业竞争力的重要组成部分。Apache Kafka 作为一款高性能的消息队列系统,在这一领域占据了重要地位。通过使用 Kafka,企业可以构建出高效的数据管道,实现数据的快速传输和处理。今天,我将从个人的角度出发,深入解析 Kafka 的三大核心组件——生产者、消费者与 Broker,希望能够帮助大家建立起对 Kafka 内部机制的基本理解。
79 2
|
1月前
|
消息中间件 Ubuntu Java
Ubuntu系统上安装Apache Kafka
Ubuntu系统上安装Apache Kafka
|
1月前
|
消息中间件 监控 Kafka
Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面
随着大数据技术的发展,Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面,方便管理和监控 Kafka 集群。本文详细介绍了 Kafka Manager 的部署步骤和基本使用方法,包括配置文件的修改、启动命令、API 示例代码等,帮助你快速上手并有效管理 Kafka 集群。
47 0

推荐镜像

更多
下一篇
DataWorks