OpenCV中图像的位运算讲解与实战演示(附Python源码 图文解释)

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: OpenCV中图像的位运算讲解与实战演示(附Python源码 图文解释)

需要源码请点赞关注收藏后评论区留言私信~~~

位运算是二进制数特有的运算操作,图像由像素组成,每个像素可以用十进制数表示,十进制整数又可以转化为二进制数,所以图像也可以做位运算,并且位运算是图像数字化技术中一项重要的运算的操作

OpenCV提供了几种常见的位运算方法 如下图所示

一、按位与运算

与运算就是按照二进制位进行判断,如果同一位的数组都是1,则运算结果的相同位数取1,否则取0

图像做与运算时,会把每一个像素值都转为二进制数,然后让两幅图像相同位置的两个像素值做与运算,最后把运算结果保存在新图像的相同位置上

与运算有两个特点,如果某像素与纯白像素做与运算,结果仍然是某像素的原值

如果某像素与纯黑像素做与运算,结果为纯黑像素

由此可以得出,如果原图像与掩模进行与运算,原图像仅保留掩模中白色区域覆盖的内容,其他区域变成黑色

如下图所示

代码如下

import cv2
import numpy as np
flower = cv2.imread("amygdalus triloba.png")  # 花原始图像
mask = np.zeros(flower.shape, np.uint8)  # 与花图像大小相等的掩模图像
mask[120:180, :, :] = 255  # 横着的白色区域
mask[:, 80:180, :] = 255  # 竖着的白色区域
img = cv2.bitwise_and(flower, mask)  # 与运算
cv2.imshow("flower", flower)  # 展示花图像
cv2.imshow("mask", mask)  # 展示掩模图像
cv2.imshow("img", img)  # 展示与运算结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

二、按位或运算

或运算也是按照二进制位进行判断,如果同一位的数组都是0,则运算结果的相同位数据取0,否则取1

如果某像素与纯白像素做或运算,结果仍然是纯白像素

如果某像素与纯黑像素做或运算,结果仍然是某像素的原值

由此可以得出,如果原图像与掩模进行或运算,原图像仅保留掩模中黑色区域覆盖的内容,其他区域变成白色

代码如下

import cv2
import numpy as np
flower = cv2.imread("amygdalus triloba.png")  # 花原始图像
mask = np.zeros(flower.shape, np.uint8)  # 与花图像大小相等的掩模图像
mask[120:180, :, :] = 255  # 横着的白色区域
mask[:, 80:180, :] = 255  # 竖着的白色区域
img = cv2.bitwise_or(flower, mask)  # 或运算
cv2.imshow("flower", flower)  # 展示花图像
cv2.imshow("mask", mask)  # 展示掩模图像
cv2.imshow("img", img)  # 展示或运算结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

三、按位取反运算

取反运算是一种单目运算,仅需一个数字参与运算就可以得出结果,取反运算也是按照二进制位进行判断

图像经过取反运算后呈现与原图颜色完全相反的效果

import cv2
flower = cv2.imread("amygdalus triloba.png")  # 花原始图像
img = cv2.bitwise_not(flower)  # 取反运算
cv2.imshow("flower", flower)  # 展示花图像
cv2.imshow("img", img)  # 展示取反运算结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

四、按位异或运算

异或运算也是按照二进制位进行判断,如果两个运算数同一位上的数字相同,则运算结果的相同位数字取0,否则取1

如果某像素与纯白像素做异或运算,结果位原像素的取反结果

如果某像素与纯黑像素做异或运算,结果仍然是某像素的原值

如果原图像与掩模进行异或运算,掩模白色区域覆盖的内容呈现取反效果,黑色区域覆盖内容保持不变

代码如下

import cv2
import numpy as np
flower = cv2.imread("amygdalus triloba.png")  # 花原始图像
m = np.zeros(flower.shape, np.uint8)  # 与花图像大小相等的0值图像
m[120:180, :, :] = 255  # 横着的白色区域
m[:, 80:180, :] = 255  # 竖着的白色区域
img = cv2.bitwise_xor(flower, m)  # 两章图像做异或运算
cv2.imshow("flower", flower)  # 展示花图像
cv2.imshow("mask", m)  # 展示零值图像
cv2.imshow("img", img)  # 展示异或运算结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

异或运算还有一个特点,执行一次异或运算得到一个结果,再对这个结果执行第二次异或运算,则还原成最初的值,利用这个特点可以实现对图像内容的加密和解密

下面利用异或运算的特点对图像进行加密和解密

从右到左分别是原图像 密匙图像 加密图像和解密图像 可以看到图像进行了加密

代码如下

import cv2
import numpy as np
def encode(img, img_key): # 加密、解密方法
    result = img = cv2.bitwise_xor(img, img_key)  # 两图像做异或运算
    return result
flower = cv2.imread("amygdalus triloba.png")  # 花原始图像
rows, colmns, channel = flower.shape  # 原图像的行数、列数和通道数
# 创建与花图像大小相等的随机像素图像,作为密钥图像
img_key = np.random.randint(0, 256, (rows, colmns, 3), np.uint8)
cv2.imshow("1", flower)  # 展示花图像
cv2.imshow("2", img_key)  # 展示秘钥图像
result = encode(flower, img_key)  # 对花图像进行加密
cv2.imshow("3", result)  # 展示加密图像
result = encode(result, img_key)  # 对花图像进行解密
cv2.imshow("4", result)  # 展示加密图像
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
21天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
22天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
44 10
|
1月前
|
算法 Unix 数据库
Python编程入门:从基础到实战
本篇文章将带你进入Python编程的奇妙世界。我们将从最基础的概念开始,逐步深入,最后通过一个实际的项目案例,让你真正体验到Python编程的乐趣和实用性。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。让我们一起探索Python的世界吧!
|
1月前
|
数据处理 Python
探索Python中的异步编程:从基础到实战
在Python的世界中,“速度”不仅是赛车手的追求。本文将带你领略Python异步编程的魅力,从原理到实践,我们不单单是看代码,更通过实例感受它的威力。你将学会如何用更少的服务器资源做更多的事,就像是在厨房里同时烹饪多道菜而不让任何一道烧焦。准备好了吗?让我们开始这场技术烹饪之旅。
|
6月前
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
217 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
6月前
|
机器学习/深度学习 人工智能 算法
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
乐器识别系统。使用Python为主要编程语言,基于人工智能框架库TensorFlow搭建ResNet50卷积神经网络算法,通过对30种乐器('迪吉里杜管', '铃鼓', '木琴', '手风琴', '阿尔卑斯号角', '风笛', '班卓琴', '邦戈鼓', '卡萨巴', '响板', '单簧管', '古钢琴', '手风琴(六角形)', '鼓', '扬琴', '长笛', '刮瓜', '吉他', '口琴', '竖琴', '沙槌', '陶笛', '钢琴', '萨克斯管', '锡塔尔琴', '钢鼓', '长号', '小号', '大号', '小提琴')的图像数据集进行训练,得到一个训练精度较高的模型,并将其
92 0
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
|
4月前
|
机器学习/深度学习 人工智能 算法
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
眼疾识别系统,使用Python作为主要编程语言进行开发,基于深度学习等技术使用TensorFlow搭建ResNet50卷积神经网络算法,通过对眼疾图片4种数据集进行训练('白内障', '糖尿病性视网膜病变', '青光眼', '正常'),最终得到一个识别精确度较高的模型。然后使用Django框架开发Web网页端可视化操作界面,实现用户上传一张眼疾图片识别其名称。
102 9
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
|
4月前
|
机器学习/深度学习 算法 机器人
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
本文介绍了2023年第十三届APMCM亚太地区大学生数学建模竞赛A题的Python代码实现,详细阐述了水果采摘机器人图像识别问题的分析与解决策略,包括图像特征提取、数学模型建立、目标检测算法使用,以及苹果数量统计、位置估计、成熟度评估和质量估计等任务的编程实践。
106 0
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
|
5月前
|
机器学习/深度学习 人工智能 算法
【服装识别系统】图像识别+Python+人工智能+深度学习+算法模型+TensorFlow
服装识别系统,本系统作为图像识别方面的一个典型应用,使用Python作为主要编程语言,并通过TensorFlow搭建ResNet50卷积神经算法网络模型,通过对18种不同的服装('黑色连衣裙', '黑色衬衫', '黑色鞋子', '黑色短裤', '蓝色连衣裙', '蓝色衬衫', '蓝色鞋子', '蓝色短裤', '棕色鞋子', '棕色短裤', '绿色衬衫', '绿色鞋子', '绿色短裤', '红色连衣裙', '红色鞋子', '白色连衣裙', '白色鞋子', '白色短裤')数据集进行训练,最后得到一个识别精度较高的H5格式模型文件,然后基于Django搭建Web网页端可视化操作界面,实现用户在界面中
144 1
【服装识别系统】图像识别+Python+人工智能+深度学习+算法模型+TensorFlow
|
6月前
|
机器学习/深度学习 人工智能 算法
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集('蜜蜂', '甲虫', '蝴蝶', '蝉', '蜻蜓', '蚱蜢', '蛾', '蝎子', '蜗牛', '蜘蛛')进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一张昆虫图片识别其名称。
342 7
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50