【大数据技术Hadoop+Spark】MapReduce之单词计数和倒排索引实战(附源码和数据集 超详细)

简介: 【大数据技术Hadoop+Spark】MapReduce之单词计数和倒排索引实战(附源码和数据集 超详细)

源码和数据集请点赞关注收藏后评论区留言私信~~~

一、统计单词出现次数

单词计数是最简单也是最能体现MapReduce思想的程序之一,可以称为MapReduce版“Hello World。其主要功能是统计一系列文本文件中每个单词出现的次数

程序解析

首先MapReduce将文件拆分成splits,由于测试用的文件较小,只有二行文字,所以每个文件为一个split,并将文件按行分割形成<key, value>对,如下图所示,这一步由MapReduce框架自动完成,其中偏移量(即key值)包括了回车所占的字符数(Windows和Linux环境会不同)

(2)将分割好的<key, value>对交给用户定义的Map方法进行处理,生成新的<key, value>对

(3)得到Map方法输出的<key,value>对后,Mapper会将它们按照key值进行排序,并执行Combine过程,将key至相同value值累加,得到Mapper的最终输出结果

(4)Reducer先对从Mapper接收的数据进行排序,再交由用户自定义的Reduce方法进行处理,得到新的<key,value>对,并作为WordCount的输出结果

主要编写Map和Reduce函数.这个Map函数使用StringTokenizer函数对字符串进行分隔,通过write方法把单词存入word中 k/v来自于Map函数中的context,可能经过了进一步处理(combiner),同样通过context输出

运行程序后通过浏览器访问页面即可获取结果

代码如下

package com.bigdata.wc;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import java.io.IOException;
import java.util.StringTokenizer;
public class WordCount {
    public static class TokenizerMapper
            extends Mapper<Object, Text, Text, IntWritable> {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                word.set(itr.nextToken());
                System.out.println(word);
                context.write(word, one);
            }
        }
    }
    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();
        public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }
    public static void main(String[] args) throws Exception {
        System.setProperty("hadoop.home.dir", "D:\\hadoop-2.7.0");
        System.setProperty("HADOOP_USER_NAME", "root");
        Configuration conf = new Configuration();
        conf.set("yarn.resourcemanager.address", "bigdata01:8032");
        conf.set("dfs.client.use.datanode.hostname", "true");
        conf.set("fs.defaultFS", "hdfs://bigdata02:9000/");
        conf.set("mapreduce.app-submission.cross-platform", "true");
        conf.set("mapreduce.framework.name", "yarn");
        conf.set("mapred.jar","D:\\hadoopdemo\\WordCount\\target\\WordCount-1.0-SNAPSHOT-jar-with-dependencies.jar");
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (otherArgs.length < 2) {
            System.err.println("Usage: wordcount <in> [<in>...] <out>");
            System.exit(2);
        }
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        for (int i = 0; i < otherArgs.length - 1; ++i) {
            FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
        }
        FileOutputFormat.setOutputPath(job,
                new Path(otherArgs[otherArgs.length - 1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

二、倒排索引

倒排索引是文档检索系统中最常用的数据结构,被广泛应用于全文搜索引擎。倒排索引主要用来存储某个单词(或词组)在一组文档中的存储位置的映射,提供了可以根据内容来查找文档的方式,而不是根据文档来确定内容,因此称为倒排索引(Inverted Index)。带有倒排索引的文件我们称为倒排索引文件,简称倒排文件(Inverted File)。

现假设有三个源文件file1.txt、file2.txt和file3.txt,需要使用倒排索引的方式对这三个源文件内容实现倒排索引,并将最后的倒排索引文件输出。

首先,使用默认的TextInputFormat类对每个输入文件进行处理,得到文本中每行的偏移量及其内容。Map过程首先分析输入的<key,value>键值对,经过处理可以得到倒排索引中需要的三个信息:单词、文档名称和词频。

经过Map阶段数据转换后,同一个文档中相同的单词会出现多个的情况,而单纯依靠后续Reduce阶段无法同时完成词频统计和生成文档列表,所以必须增加一个Combine阶段,先完成每一个文档的词频统计。

经过上述两个阶段的处理后,Reduce阶段只需将所有文件中相同key值的value值进行统计,并组合成倒排索引文件所需的格式。

效果测试如下

部分代码如下 全部代码和数据集请点赞关注收藏后评论区留言私信

package com.mr.InvertedIndex;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class InvertedIndexReducer extends Reducer<Text, Text, Text, Text> {  
    private static Text result = new Text();  
    // 输入:<MapReduce file3:2>  
    // 输出:<MapReduce file1:1;file2:1;file3:2;>  
    @Override  
    protected void reduce(Text key, Iterable<Text> values, Context context)  
            throws IOException, InterruptedException {  
        // 生成文档列表  
        String fileList = new String();  
        for (Text value : values) {  
            fileList += value.toString() + ";";  
        }  
        result.set(fileList);  
        context.write(key, result);  
    }  
}

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
7月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
397 0
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
999 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
10月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
514 79
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
715 4
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
592 2
|
SQL 分布式计算 Scala
[转载] 是时候学习真正的 spark 技术了
spark sql 可以说是 spark 中的精华部分了,我感觉整体复杂度是 spark streaming 的 5 倍以上,现在 spark 官方主推 structed streaming, spark streaming 维护的也不积极了, 我们基于 spark 来构建大数据计算任务,重心也要...
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
275 0
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
273 0
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
320 0
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
587 6

相关实验场景

更多