评价模型:CRITIC客观赋权法

简介: 评价模型:CRITIC客观赋权法

1.算法原理介绍

  CRITIC方法是一种客观权重赋权法,其基本思路是确定指标的客观权数以两个基本概念为基础。一是对比强度,它表示同一指标各个评价方案取值差距的大小,以标准差的形式来表现。二是评价指标之间的冲突性,指标之间的冲突性是以指标之间的相关性为基础,如两个指标之间具有较强的正相关,说明两个指标冲突性较低。

  CRITIC方法的主要原理是通过对比强度和指标之间的冲突性来确定指标的客观权数,从而实现对评价方案的客观权重赋值。该方法适用于判断数据稳定性,并且适合分析指标或因素之间有着一定的关联的数据。

2.算法步骤

image.png

2.2 计算信息承载量

image.png
2.3 计算权重和得分
image.png
3.案例分析
假设你想购买一台新电视,考虑了以下指标:

  • 屏幕尺寸(英寸)——正向指标:尺寸越大,观看体验可能越好。
  • 价格(美元)——负向指标:价格越高,对于购买者来说可能越不吸引人。
  • 电视的能源效率(每年的电量消耗,以kWh为单位)—— 负向指标:消耗的电量越多,运行成本越高。
  • 用户评分(5星制中的星数) ——正向指标:评分越高,产品质量可能越好。
    具体数据如下表所示:
屏幕尺寸 价格 能源效率 用户评分
电视A 50 500 75 4.5
电视B 55 650 80 4.8
电视C 65 800 120 4.2
电视D 45 450 65 4.0
电视E 60 700 90 4.6

首先对数据进行标准化处理:

% 电视决策矩阵
decision_matrix = [
    50, 500, 75, 4.5;  % 电视A
    55, 650, 80, 4.8;  % 电视B
    65, 800, 120, 4.2; % 电视C
    45, 450, 65, 4.0;  % 电视D
    60, 700, 90, 4.6;  % 电视E
];
%数据标准化处理
for i=2:3
    decision_matrix(:, i) = (max(decision_matrix(:, i)) - decision_matrix(:, i))/(max(decision_matrix(:, i)) - min(decision_matrix(:, i)))
end
for i=[1,4]
    decision_matrix(:, i) = (decision_matrix(:, i)-min(decision_matrix(:, i)))/(max(decision_matrix(:, i)) - min(decision_matrix(:, i)))
end
% 数据标准化
norm_matrix = zscore(decision_matrix)

或者:

% 电视决策矩阵
decision_matrix = [
    50, 500, 75, 4.5;  % 电视A
    55, 650, 80, 4.8;  % 电视B
    65, 800, 120, 4.2; % 电视C
    45, 450, 65, 4.0;  % 电视D
    60, 700, 90, 4.6;  % 电视E
];
% 对负向指标进行处理,将其转换为正向指标
decision_matrix(:, 2) = max(decision_matrix(:, 2)) + 1 - decision_matrix(:, 2)
decision_matrix(:, 3) = max(decision_matrix(:, 3)) + 1 - decision_matrix(:, 3)
% 数据标准化
norm_matrix = zscore(decision_matrix)

标准化结果:

然后再根据算法步骤计算权重:

% 计算标准间的相关系数
R = corrcoef(norm_matrix);
% 确定冲突度和信息量
n = size(norm_matrix, 2); % 标准的数量
conflict = zeros(1, n);
for i = 1:n
    conflict(i) = std(norm_matrix(:, i)) * (1 - sum(R(i, :)) / (n - 1));
end
% 计算权重
weights = conflict / sum(conflict);
% 显示结果
disp('指标的权重:');
disp(weights);

计算结果:

最后计算每个电视的得分:

完整代码:

% 电视决策矩阵
decision_matrix = [
    50, 500, 75, 4.5;  % 电视A
    55, 650, 80, 4.8;  % 电视B
    65, 800, 120, 4.2; % 电视C
    45, 450, 65, 4.0;  % 电视D
    60, 700, 90, 4.6;  % 电视E
];
%数据标准化处理
for i=2:3
    decision_matrix(:, i) = (max(decision_matrix(:, i)) - decision_matrix(:, i))/(max(decision_matrix(:, i)) - min(decision_matrix(:, i)))
end
for i=[1,4]
    decision_matrix(:, i) = (decision_matrix(:, i)-min(decision_matrix(:, i)))/(max(decision_matrix(:, i)) - min(decision_matrix(:, i)))
end
% 对负向指标进行处理,将其转换为正向指标
% decision_matrix(:, 2) = max(decision_matrix(:, 2)) + 1 - decision_matrix(:, 2)
% decision_matrix(:, 3) = max(decision_matrix(:, 3)) + 1 - decision_matrix(:, 3)
% 数据标准化
norm_matrix = zscore(decision_matrix)
% 计算标准间的相关系数
R = corrcoef(norm_matrix);
% 确定冲突度和信息量
n = size(norm_matrix, 2); % 标准的数量
conflict = zeros(1, n);
for i = 1:n
    conflict(i) = std(norm_matrix(:, i)) * (1 - sum(R(i, :)) / (n - 1));
end
% 计算权重
weights = conflict / sum(conflict);
% 显示结果
disp('指标的权重:');
disp(weights);
% 根据标准化的决策矩阵和权重计算每台电视的得分
scores = norm_matrix * weights';
% 显示每台电视的得分
disp('每台电视的得分:');
for i = 1:size(scores, 1)
    fprintf('电视%d 的得分: %.2f\n', i, scores(i));
end


目录
相关文章
|
机器学习/深度学习 监控 算法
信用风险评估评分卡建模方法及原理| 学习笔记
快速学习信用风险评估评分卡建模方法及原理。
信用风险评估评分卡建模方法及原理| 学习笔记
|
6月前
|
JSON 自然语言处理 供应链
R语言主题模型LDA文本挖掘评估公司面临的风险领域与可视化
R语言主题模型LDA文本挖掘评估公司面临的风险领域与可视化
|
3天前
|
数据采集 监控 并行计算
基于MCMC的贝叶斯营销组合模型评估方法论: 系统化诊断、校准及选择的理论框架
贝叶斯营销组合建模(Bayesian Marketing Mix Modeling,MMM)作为一种先进的营销效果评估方法,其核心在于通过贝叶斯框架对营销投资的影响进行量化分析。
16 3
基于MCMC的贝叶斯营销组合模型评估方法论: 系统化诊断、校准及选择的理论框架
|
26天前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
52 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
9天前
|
算法
客观评价模型与主观DMOS分数拟合的分享与实用性探讨
本文深入探讨了视频质量的主客观评价方法,指出客观评价方法旨在精确描述人眼的主观感受。文章介绍了微帧在日常训练中使用的拟合方法,通过映射函数将客观指标与主观评价DMOS分数进行非线性拟合,以提高评价的准确性、一致性、稳定性和单调性。具体讨论了SSIM、PSNR和VMAF等常见客观指标的拟合公式,并总结了拟合方法在分析质量差异、统一客观指标和指导参数设置方面的实用价值。
|
5月前
|
机器学习/深度学习 数据采集 算法
【阿旭机器学习实战】【35】员工离职率预测---决策树与随机森林预测
【阿旭机器学习实战】【35】员工离职率预测---决策树与随机森林预测
|
4月前
|
机器学习/深度学习 Python
贝叶斯分析与决策理论:用于确定分类问题决策点的应用
在分类问题中,一个常见的难题是决定输出为数字时各类别之间的切分点
61 9
贝叶斯分析与决策理论:用于确定分类问题决策点的应用
|
5月前
|
机器学习/深度学习 数据可视化 关系型数据库
基于机器学习的信用卡办卡意愿模型预测项目
基于机器学习的信用卡办卡意愿模型预测项目
|
5月前
|
机器学习/深度学习 算法 数据挖掘
机器学习之聚类——DBSCAN演绎组织的形成
机器学习之聚类——DBSCAN演绎组织的形成
27 0
|
5月前
|
机器学习/深度学习 算法 数据可视化
【机器学习】分类与预测算法的评价与优化
【机器学习】分类与预测算法的评价与优化
95 0