4.0 Linux进程前导知识

简介: 4.0 Linux进程前导知识

冯.诺依曼体系  

CPU:运算器,控制器

输入设备:键盘,麦克风,摄像头,鼠标,网卡,磁盘等。

输出设备:显示器,声卡,显卡,打印机,磁盘,网卡。

存储器:内存

这些设备并不是随便连接起来的,是由总线连接,现在总线集成在主板上,这些硬件只需要插入主板的插槽就可以实现连接,设备的连接不是单纯为了连接,是为了数据的流动,能够让数据从输入设备流入内存,从内存流出到输出设备,就好像数据从磁盘加载到内存,再从内存刷到显示器上一样,如果硬件不连接,数据无法从一个硬件到另一个硬件,设备连接不是目的,而是为了让数据流动的手段。设备之间数据流动的本质是数据在硬件之间进行来回拷贝,拷贝的整体速度,是决定计算机效率的重要指标。

而冯.诺依曼体系能够在如今还是主流,是因为他的稳定性和效率都不错,而且价格便宜。



那么第二个问题来了,我们为什么需要内存,直接外设和CPU交互不好吗?

就像这样:

我们加了内存之后看起来更耗费时间了,但内存的存在一定是有他存在的意义

寄存器和缓存是集成在CPU上的

越靠近CPU的硬件越贵,效率越高,容量越小。

越远离CPU的硬件越便宜,效率越低,容量越大,如磁盘。

而CPU和磁盘的效率差距非常大,CPU太快,磁盘太慢,直接交互的话,那么对CPU来说会造成效率上的极大浪费。(磁盘将数据加载到CPU会很慢,而CPU计算很快,也就是CPU算出来了,而且已经给了输出设备,但是输入设备和输出设备反应不过来,数据还没再次给到CPU,并且CPU算出的数据输出设备还未刷新出去)

那加上内存就不浪费了吗?硬盘直接和CPU交互,还省了和你内存交互的时间,你凭什么说加上内存就效率高了?

这是因为我们在内存中加了预加载和缓存,把硬件上的问题转换为软件上的问题,只要有个好的操作系统,那么就可以由操作系统判断,预先把数据加载到内存上,CPU需要时直接和内存交互,然后计算出来的结果不给输出设备,而是返回给内存,在内存不忙时刷新到输出设备,最后,也就变成了CPU和内存交互。

这样,计算机的整体效率就提高到了以内存效率为主。

当然,如果你非常非常有钱,可以把所有硬件全部换成寄存器,这样的设备当然极快。



那么,我们明白了,数据传输时先从输入设备加载到内存上,再由内存和CPU交互,CPU算出来后给内存,再由内存刷新到输出设备。

我们也就又有了个问题:

为什么说程序要运行时要先加载到内存上呢?

首先,程序是不是可执行的二进制文件,是文件就存储在磁盘上,要运行就要先加载到内存上,这是冯.诺依曼体系所决定的,然后二进制文件由CPU计算后再给到内存,结果由内存刷新。

就好像我们的QQ,是不是个程序呢? 他要运行一定是在内存中,由CPU执行,我们在给别人发消息时,由键盘输入内容,加载到内存中,经过CPU计算到内存,由内存刷新到网卡中,通过网络传输到别人的网卡上,这个内容加载到内存中,通过CPU解码,再由内存刷新到显示器上。、



而硬件都是由操作系统进行管理,操作系统是个进行硬件管理的软件,其实本质也是可执行程序

它包括了内容管理,文件管理,进程管理,驱动管理等

每一个硬件都有他们各自的驱动程序,驱动程序可以驱动硬件,也可以使其待机,但是驱动只负责执行,是否驱动硬件的指令,由操作系统下达,也就是说操作系统通过驱动来控制硬件。

而操作系统对硬件的管理是有一套逻辑的:

首先他要对硬件的属性进行描述,定义一个struct结构体,去存放硬件的属性,操作系统要管理硬件,是定义硬件数量的对象,然后通过链表将他们连接起来,在操作系统想要管理某个硬件时,可以通过遍历这个链表找到对应的硬件,然后他通过驱动程序去驱动。当我们不需要这个硬件卸载其驱动或者需要其他硬件而下载驱动时,通过对这个硬件的链表的增删查改来管理这些硬件。

总结就是:先描述,再组织

描述硬件的属性,然后通过定义硬件对象,将他们用链表连接起来,也就是组织起来,这样就能进行管理。

就像是我们写的通讯录,我们首先是对人的属性进行描述,定义人的对象,可以定义很多对象,而后通过链表将这些联系人连接起来,在我们需要查找或者删除某人时,他通过对链表的增删查改来管理这个通讯录。

任何面向对象的语言,都离不开这六个字,一定是先描述对象的属性,如类,然后通过类去实例化对象,而且不止一个对象,然后我们通过容器,也就是某种数据结构来组织连接这些对象,对他们进行增删查改,实现对他们的管理,C语言也是如此。

这些就是将现实的实际问题,进行计算机级别的建模过程,转化成计算机能够认识的问题,就像我们的操作系统去管理硬件。

目录
相关文章
|
1月前
|
资源调度 Linux 调度
Linux c/c++之进程基础
这篇文章主要介绍了Linux下C/C++进程的基本概念、组成、模式、运行和状态,以及如何使用系统调用创建和管理进程。
35 0
|
3月前
|
网络协议 Linux
Linux查看端口监听情况,以及Linux查看某个端口对应的进程号和程序
Linux查看端口监听情况,以及Linux查看某个端口对应的进程号和程序
640 2
|
3月前
|
Linux Python
linux上根据运行程序的进程号,查看程序所在的绝对路径。linux查看进程启动的时间
linux上根据运行程序的进程号,查看程序所在的绝对路径。linux查看进程启动的时间
68 2
|
16天前
|
缓存 监控 Linux
linux进程管理万字详解!!!
本文档介绍了Linux系统中进程管理、系统负载监控、内存监控和磁盘监控的基本概念和常用命令。主要内容包括: 1. **进程管理**: - **进程介绍**:程序与进程的关系、进程的生命周期、查看进程号和父进程号的方法。 - **进程监控命令**:`ps`、`pstree`、`pidof`、`top`、`htop`、`lsof`等命令的使用方法和案例。 - **进程管理命令**:控制信号、`kill`、`pkill`、`killall`、前台和后台运行、`screen`、`nohup`等命令的使用方法和案例。
48 4
linux进程管理万字详解!!!
|
6天前
|
存储 运维 监控
深入Linux基础:文件系统与进程管理详解
深入Linux基础:文件系统与进程管理详解
43 8
|
15天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
49 4
|
16天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
18天前
|
消息中间件 存储 Linux
|
24天前
|
运维 Linux
Linux查找占用的端口,并杀死进程的简单方法
通过上述步骤和命令,您能够迅速识别并根据实际情况管理Linux系统中占用特定端口的进程。为了获得更全面的服务器管理技巧和解决方案,提供了丰富的资源和专业服务,是您提升运维技能的理想选择。
26 1
|
1月前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
【10月更文挑战第9天】本文将深入浅出地介绍Linux系统中的进程管理机制,包括进程的概念、状态、调度以及如何在Linux环境下进行进程控制。我们将通过直观的语言和生动的比喻,让读者轻松掌握这一核心概念。文章不仅适合初学者构建基础,也能帮助有经验的用户加深对进程管理的理解。
22 1