Python 教程之控制流(14)Python__iter__()和__next__()将对象转换为迭代器

简介: Python 教程之控制流(14)Python__iter__()和__next__()将对象转换为迭代器

在许多情况下,我们需要像迭代器一样访问对象。一种方法是形成一个生成器循环,但这会延长程序员的任务和时间。Python通过为此任务提供内置方法__iter__()来简化此任务。

iter()函数返回给定对象(数组、集合、元组等或自定义对象)的迭代器。它创建一个对象,可以使用 next() 函数一次访问一个元素,这在处理循环时通常派上用场。


语法:

iter(object)
iter(callable, sentinel)
  • 对象: 必须创建其迭代器的对象。它可以是集合对象(如列表或元组),也可以是用户定义的对象(使用 OOPS)。
  • Callable,  Sentinel:可调用表示可调用对象,哨兵是需要终止迭代的值,哨兵值表示迭代序列的结束。

例外:  

如果我们在所有元素都具有之后调用迭代器已迭代,则引发停止迭代错误。

__iter__() 函数返回一个迭代器对象,该对象遍历给定对象的每个元素。下一个元素可以通过__next__()函数访问。对于可调用的对象和哨兵值,将完成迭代,直到找到该值或到达元素的末尾。在任何情况下,都不会修改原始对象。

代码 #1 :

# 演示 iter() 基本用法的 Python 代码
listA = ['a','e','i','o','u']
iter_listA = iter(listA)
try:
  print( next(iter_listA))
  print( next(iter_listA))
  print( next(iter_listA))
  print( next(iter_listA))
  print( next(iter_listA))
  print( next(iter_listA)) #StopIteration error
except:
  pass

输出: 

a
e
i
o
u

代码 #2 :

# 演示 iter() 基本用法的 Python 代码
lst = [11, 22, 33, 44, 55]
iter_lst = iter(lst)
while True:
  try:
    print(iter_lst.__next__())
  except:
    break

输出:

11
22
33
44
55

代码 #3 :

# 演示 iter() 基本用法的 Python 代码
listB = ['Cat', 'Bat', 'Sat', 'Mat']
iter_listB = listB.__iter__()
try:
  print(iter_listB.__next__())
  print(iter_listB.__next__())
  print(iter_listB.__next__())
  print(iter_listB.__next__())
  print(iter_listB.__next__()) #StopIteration error
except:
  print(" \nThrowing 'StopIterationError'",
          "I cannot count more.")

输出:

Cat
Bat
Sat
Mat
Throwing 'StopIterationError' I cannot count more.

代码 #4 : 用户定义的对象(使用 OOPS)

# 显示使用 OOPs 的迭代器() 的 Python 代码
class Counter:
  def __init__(self, start, end):
    self.num = start
    self.end = end
  def __iter__(self):
    return self
  def __next__(self):
    if self.num > self.end:
      raise StopIteration
    else:
      self.num += 1
      return self.num - 1
# 驱动代码
if __name__ == '__main__' :
  a, b = 2, 5
  c1 = Counter(a, b)
  c2 = Counter(a, b)
  # 方式 1-打印范围而不使用 iter()
  print ("Print the range without iter()")
  for i in c1:
    print ("Eating more Pizzas, counting ", i, end ="\n")
  print ("\nPrint the range using iter()\n")
  当引发停止网站时,打印自定义消息
  # 方式 2- 使用 iter()
  obj = iter(c2)
  try:
    while True: # Print till error raised
      print ("Eating more Pizzas, counting ", next(obj))
  except:
    # 当引发停止网站时,打印自定义消息
    print ("\nDead on overfood, GAME OVER")

输出

Print the range without iter()
Eating more Pizzas, counting  2
Eating more Pizzas, counting  3
Eating more Pizzas, counting  4
Eating more Pizzas, counting  5
Print the range using iter()
Eating more Pizzas, counting  2
Eating more Pizzas, counting  3
Eating more Pizzas, counting  4
Eating more Pizzas, counting  5
Dead on overfood, GAME OVER
目录
相关文章
|
3天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
30 8
|
3天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
22 7
|
3天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
22 4
|
3天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
20 5
|
14天前
|
缓存 监控 算法
Python内存管理:掌握对象的生命周期与垃圾回收机制####
本文深入探讨了Python中的内存管理机制,特别是对象的生命周期和垃圾回收过程。通过理解引用计数、标记-清除及分代收集等核心概念,帮助开发者优化程序性能,避免内存泄漏。 ####
28 3
|
18天前
|
大数据 数据处理 开发者
Python中的迭代器和生成器:不仅仅是语法糖####
本文探讨了Python中迭代器和生成器的深层价值,它们不仅简化代码、提升性能,还促进了函数式编程风格。通过具体示例,揭示了这些工具在处理大数据、惰性求值及资源管理等方面的优势。 ####
|
27天前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
24 1
|
7月前
|
Python
【Python操作基础】——字典,迭代器和生成器
【Python操作基础】——字典,迭代器和生成器
|
3月前
|
机器学习/深度学习 设计模式 大数据
30天拿下Python之迭代器和生成器
30天拿下Python之迭代器和生成器
21 3
|
2月前
|
存储 大数据 Python
Python 中迭代器与生成器:深度解析与实用指南
Python 中迭代器与生成器:深度解析与实用指南
20 0