C++单调向量算法应用:所有子数组中不平衡数字之和

简介: C++单调向量算法应用:所有子数组中不平衡数字之和

涉及知识点

单调向量

题目

一个长度为 n 下标从 0 开始的整数数组 arr 的 不平衡数字 定义为,在 sarr = sorted(arr) 数组中,满足以下条件的下标数目:

0 <= i < n - 1 ,和

sarr[i+1] - sarr[i] > 1

这里,sorted(arr) 表示将数组 arr 排序后得到的数组。

给你一个下标从 0 开始的整数数组 nums ,请你返回它所有 子数组 的 不平衡数字 之和。

子数组指的是一个数组中连续一段 非空 的元素序列。

示例 1:

输入:nums = [2,3,1,4]

输出:3

解释:总共有 3 个子数组有非 0 不平衡数字:

  • 子数组 [3, 1] ,不平衡数字为 1 。
  • 子数组 [3, 1, 4] ,不平衡数字为 1 。
  • 子数组 [1, 4] ,不平衡数字为 1 。
    其他所有子数组的不平衡数字都是 0 ,所以所有子数组的不平衡数字之和为 3 。
    示例 2:
    输入:nums = [1,3,3,3,5]
    输出:8
    解释:总共有 7 个子数组有非 0 不平衡数字:
  • 子数组 [1, 3] ,不平衡数字为 1 。
  • 子数组 [1, 3, 3] ,不平衡数字为 1 。
  • 子数组 [1, 3, 3, 3] ,不平衡数字为 1 。
  • 子数组 [1, 3, 3, 3, 5] ,不平衡数字为 2 。
  • 子数组 [3, 3, 3, 5] ,不平衡数字为 1 。
  • 子数组 [3, 3, 5] ,不平衡数字为 1 。
  • 子数组 [3, 5] ,不平衡数字为 1 。
    其他所有子数组的不平衡数字都是 0 ,所以所有子数组的不平衡数字之和为 8 。
    参数范围
    1 <= nums.length <= 1000
    1 <= nums[i] <= nums.length

分析

时间复杂度

O(n*logn),共五步,四步是是O(n),一步是O(nlogn),故总时间复杂度是O(nlogn)。

排在首位

左边没有数小于等于nums[i],右边没有数据小于nums[i]。

原理

排序时,相同的数字相同顺序不变。依次枚举nums个元素,再计算所有子数组的不平衡数之和。如果左边有数等于nums[i]或nums[i]-1,则nums[i]一定不是不平衡数字。处理nums[i]时,包括nums[i]的子数组[l,r],l其取值范围为(-1,i],r取值范围为[i,m_c)。令l1是nums[l1]nums[i]或nums[l1]+1nums[i],l1取值范围为(-1,i)如果有多个l1,取最大值。令r1取值范围为(i,m_c),令nums[r1]==nums[i]-1,如果有多个r1,取最小值。如果l1不存在,取-1;如果r1不存在取m_c。如果l取[0,il]或r取[r1,m_c),则nums[i]一定不是平衡数。

条件一 取[0,il]或r取[r1,m_c)
条件二 排在首位
情况一 条件一成立 条件二一定不成立 一定不是不平衡数
情况二 条件一不成立 条件二成立 一定不是不平衡数
情况二 条件一不成立 条件二不成立 不平衡数

由于条件一和条件二不可能同时成立,所以情况二,可以简化为:条件二成立。

变量解释

num1 情况二和情况三
num2 情况二

单调向量

如果l11 < l12,且nums[l11] >= nums[l12],则l11被淘汰。这意味者:qLeft是单调递增,方便使用二分查找

步骤

一,计算l1。

二,计算r1。

三,计算l2。

四,计算r2。

五,枚举nums[i]的不平衡数。

代码

class Solution {
public:
int sumImbalanceNumbers(vector& nums) {
m_c = nums.size();
const int iMaxValue = *std::max_element(nums.begin(), nums.end());
vector vLeftRange(m_c),vRightRange(m_c);
{
vector vLeft(iMaxValue + 1, -1);
for (int i = 0; i < m_c; i++)
{
vLeftRange[i] = max(vLeft[nums[i]], vLeft[nums[i] - 1]);
vLeft[nums[i]] = i;
}
}
{
vector vRight(iMaxValue + 1, nums.size());
for (int i =m_c-1 ; i >= 0 ; i-- )
{
vRightRange[i] = vRight[nums[i]-1];
vRight[nums[i]] = i;
}
}
vector vLeftRange2(m_c), vRightRange2(m_c);
{
vector<pair<int, int>> qLeft;
for (int i = 0; i < m_c; i++)
{
auto it1 = std::upper_bound(qLeft.begin(), qLeft.end(), std::make_pair(nums[i] + 1, -1));
int left = (qLeft.begin() == it1) ? -1 : std::prev(it1)->second;
vLeftRange2[i] = left;
while (qLeft.size() && (qLeft.back().first >= nums[i]))
{
qLeft.pop_back();
}
qLeft.emplace_back(nums[i], i);
}
}
{
vector<pair<int, int>> qRight;
for (int i = m_c - 1; i >= 0; i–)
{
auto it2 = std::upper_bound(qRight.begin(), qRight.end(), std::make_pair(nums[i], -1));
auto right = (qRight.begin() == it2) ? m_c : std::prev(it2)->second;
vRightRange2[i] = right;
while (qRight.size() && (qRight.back().first >= nums[i]))
{
qRight.pop_back();
}
qRight.emplace_back(nums[i], i);
}
}
int iRet = 0;
for (int i = 0; i < m_c; i++)
{
int num1 = (i - vLeftRange[i]) * (vRightRange[i] - i);//左边不包括nums[i]和nums[i]-1,右边不包括nums[i]的数量
int num2 = (i - vLeftRange2[i]) * (vRightRange2[i] - i);//左边全部都比他大,右边大于等于,也就是排到最左边
iRet += num1 - num2;
}
return iRet;
}
int m_c;
};

核心代码

测试

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
assert(v1[i] == v2[i]);
}
}
template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}
int main()
{
Solution slu;
vector nums = {2,3,1,3 };
int res;
res = slu.sumImbalanceNumbers(nums);
Assert(3 ,res);
//CConsole::Out(res);

}

2023年8月旧代码一

class Solution {
public:
int sumImbalanceNumbers(vector& nums) {
m_c = nums.size();
int iRet = 0;
for (int i = 0; i < m_c; i++)
{
int iMin = nums[i], iMax = nums[i];
int iBalanceNum = 0;
std::unordered_set mVis;
mVis.emplace(nums[i]);
for (int j = i+1; j < m_c; j++)
{
const int& n = nums[j];
if (mVis.count(n))
{
iRet += iBalanceNum;
continue;
}
if (n < iMin)
{
if (!mVis.count(n + 1))
{
iBalanceNum++;
}
iMin = n;
}
else if (n > iMax)
{
if (!mVis.count(n - 1))
{
iBalanceNum++;
}
iMax = n;
}
else
{
if (mVis.count(n - 1)&& mVis.count(n + 1))
{
iBalanceNum–;
}
if (mVis.count(n - 1) || mVis.count(n + 1))
{
}
else
{
iBalanceNum++;
}
}
iRet += iBalanceNum;
mVis.emplace(n);
}
}
return iRet;
}
int m_c;
};

2023年8月旧代码二

class Solution {
public:
int sumImbalanceNumbers(vector& nums) {
m_c = nums.size();
int mVis[1001] = { 0 };
int iRet = 0;
for (int i = 0; i < m_c; i++)
{
int iMin = nums[i], iMax = nums[i];
int iBalanceNum = 0;
memset(mVis, 0, sizeof(mVis));
mVis[nums[i]]= true;
for (int j = i+1; j < m_c; j++)
{
const int& n = nums[j];
if (mVis[n])
{
iRet += iBalanceNum;
continue;
}
if (n < iMin)
{
if (!mVis[n + 1])
{
iBalanceNum++;
}
iMin = n;
}
else if (n > iMax)
{
if (!mVis[n - 1])
{
iBalanceNum++;
}
iMax = n;
}
else
{
if (mVis[n - 1] && mVis[n + 1])
{
iBalanceNum–;
}
if (mVis[n - 1] || mVis[n + 1])
{
}
else
{
iBalanceNum++;
}
}
iRet += iBalanceNum;
mVis[n]=true;
}
}
return iRet;
}
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

充满正能量得对大家说
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
墨家名称的来源:有所得以墨记之。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境:

VS2022 C++17


相关文章
|
26天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
25天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
40 1
|
25天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
56 1
|
1月前
|
缓存 算法 网络协议
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
47 4
|
1月前
|
机器学习/深度学习 监控 算法
基于反光衣和检测算法的应用探索
本文探讨了利用机器学习和计算机视觉技术进行反光衣检测的方法,涵盖图像预处理、目标检测与分类、特征提取等关键技术。通过YOLOv5等模型的训练与优化,展示了实现高效反光衣识别的完整流程,旨在提升智能检测系统的性能,应用于交通安全、工地监控等领域。
|
1月前
|
存储 算法 网络协议
OSPF的SPF算法介绍:原理、实现与应用
OSPF的SPF算法介绍:原理、实现与应用
81 3
|
1月前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
45 0
|
26天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
2月前
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
61 1
|
2月前
|
监控 算法 数据挖掘
HyperLogLog算法有哪些应用场景呢
【10月更文挑战第19天】HyperLogLog算法有哪些应用场景呢
22 0