C++前缀和算法的应用:预算内的最多机器人数目

简介: C++前缀和算法的应用:预算内的最多机器人数目

本文涉及的基础知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频

单调双向队列

滑动窗口

题目

你有 n 个机器人,给你两个下标从 0 开始的整数数组 chargeTimes 和 runningCosts ,两者长度都为 n 。第 i 个机器人充电时间为 chargeTimes[i] 单位时间,花费 runningCosts[i] 单位时间运行。再给你一个整数 budget 。

运行 k 个机器人 总开销 是 max(chargeTimes) + k * sum(runningCosts) ,其中 max(chargeTimes) 是这 k 个机器人中最大充电时间,sum(runningCosts) 是这 k 个机器人的运行时间之和。

请你返回在 不超过 budget 的前提下,你 最多 可以 连续 运行的机器人数目为多少。

示例 1:

输入:chargeTimes = [3,6,1,3,4], runningCosts = [2,1,3,4,5], budget = 25

输出:3

解释:

可以在 budget 以内运行所有单个机器人或者连续运行 2 个机器人。

选择前 3 个机器人,可以得到答案最大值 3 。总开销是 max(3,6,1) + 3 * sum(2,1,3) = 6 + 3 * 6 = 24 ,小于 25 。

可以看出无法在 budget 以内连续运行超过 3 个机器人,所以我们返回 3 。

示例 2:

输入:chargeTimes = [11,12,19], runningCosts = [10,8,7], budget = 19

输出:0

解释:即使运行任何一个单个机器人,还是会超出 budget,所以我们返回 0 。

参数范围

chargeTimes.length == runningCosts.length == n

1 <= n <= 5 * 104

1 <= chargeTimes[i], runningCosts[i] <= 105

1 <= budget <= 1015

分析

时间复杂度

两层循环,但第二层循环,没有从头开始。所以总时间复杂度是O(n)。

滑动窗口

[left,r)如果r增加,则预算也增加。对于每个left,我们求出使[left,r]超过预算的第一个r,也就是[left,r)以left开始可以运行最多的连续机器人。这是滑动窗口的经典应用场景。

求最大充电时间(单调双向队列)

对于任意连续机器人[left,r),如果left <= x1 < x2 < r ,且chargeTimes[x1] <= chargeTimes[x2],则chargeTimes[x1]被 chargeTimes[x2]淘汰了。双向队列依qIndex次记录除淘汰外的x,那么qIndex对应的值是递减的,这意味者首元素对应的值就是最大值。qIndex会在以下情况被修改:

x2淘汰x1
增加x2
移除left,left可能已经被淘汰
[left,r]超过预算时:应该从队列移除r,不移除也可以,下个left会移除的。

注意:

r不能小于left,所以在枚举left结束时,根据需要看是否要增加r。

大致步骤

一,求前缀和。

二,枚举left。

a,枚举r。

b,更新iRet(返回值)。

c,更新双向队列。

d,如果需要更新r。

e,更新left。

枚举r退出循环

有两种情况退出循环。

方式一 r=m_c,越界。[left,r)一定没超过预算,否则以方式二,退出了。
方式二 [left,r]超出预算。[left,r)一定没超过预算,否则上一轮循环就退出了。
总结 两种退出方式,[left,r)都是以left开始的最长连续机器人。

代码

核心代码

class Solution {
public:
int maximumRobots(vector& chargeTimes, vector& runningCosts, long long budget) {
m_c = chargeTimes.size();
vector vSum = { 0 };
for (const auto& n : runningCosts)
{
vSum.emplace_back(n + vSum.back());
}
int right = 0;
std::deque qIndexs;
int iRet = 0;
for (int left = 0; left < m_c; left++)
{
//枚举r
while (right < m_c)
{
while (qIndexs.size() && (chargeTimes[qIndexs.back()] <= chargeTimes[right]))
{
qIndexs.pop_back();
}
qIndexs.emplace_back(right);
//计算[left,right+1)的积分
const long long curCost = chargeTimes[qIndexs.front()]+(right + 1 -left)* (vSum[right+1]-vSum[left]);
if (curCost > budget)
{
break;
}
right++;
}
iRet = max(iRet, right - left);
//滑动窗口中删除left
if (qIndexs.size()&&(qIndexs.front() == left))
{
qIndexs.pop_front();
}
if (right <= left)
{
right++;
}
}
return iRet;
}
int m_c;
};

测试用例

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
assert(v1[i] == v2[i]);
}
}
template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}
int main()
{
Solution slu;
vector chargeTimes, runningCosts;
long long budget = 0;
int res;
chargeTimes = { 19,63,21,8,5,46,56,45,54,30,92,63,31,71,87,94,67,8,19,89,79,25 };
runningCosts = { 91,92,39,89,62,81,33,99,28,99,86,19,5,6,19,94,65,86,17,10,8,42 };
budget = 85;
res = slu.maximumRobots(chargeTimes, runningCosts, budget);
Assert(1 ,res);
chargeTimes = { 3, 6, 1, 3, 4 };
runningCosts = { 2, 1, 3, 4, 5 };
budget = 25;
res = slu.maximumRobots(chargeTimes, runningCosts, budget);
Assert(3, res);
//CConsole::Out(res);

}

2023年3月旧代码

class Solution {
public:
int maximumRobots(vector& chargeTimes, vector& runningCosts, long long budget) {
m_c = chargeTimes.size();
int left = 0;
int iRet = 0;
vector vSum(1);
std::deque qMaxIndexs;
for (int r = 0; r < m_c; r++)
{
vSum.push_back(vSum.back() + runningCosts[r]);
while (qMaxIndexs.size() && chargeTimes[r] >= chargeTimes[qMaxIndexs.back()])
{
qMaxIndexs.pop_back();
}
qMaxIndexs.push_back®;
while (qMaxIndexs.size() && ((vSum[r + 1] - vSum[left])*(r - left + 1) + chargeTimes[qMaxIndexs.front()] > budget))
{
if (qMaxIndexs.front() == left)
{
qMaxIndexs.pop_front();
}
left++;
}
iRet = max(iRet, r - left + 1);
}
return iRet;
}
int m_c;
};

2023年9月旧代码

class Solution {
public:
int maximumRobots(vector& chargeTimes, vector& runningCosts, long long budget) {
std::deque que;
int iRet = -1;
long long sum = 0;
for (int left = 0, r = 0; left < chargeTimes.size(); left++)
{
while (que.size() && (que.front() < left ))
{
que.pop_front();
}
for (; r < chargeTimes.size(); r++)
{
while (que.size() && (chargeTimes[que.back()] <= chargeTimes[r]))
{
que.pop_back();
}
que.emplace_back®;
const long long curNeed = (sum+ runningCosts[r])*(r-left+1) + chargeTimes[que.front()];
if (curNeed > budget)
{
break;
}
sum += runningCosts[r];
}
iRet = max(iRet, r - left );
//sum是runningCosts[left…r)的和
if (left != r)
{
sum -= runningCosts[left];
}
else
{
r++;
}
}
return iRet;
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

| 鄙人想对大家说的话

|

|-|

|闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。|

| 墨家名称的来源:有所得以墨记之。 |

|如果程序是一条龙,那算法就是他的是睛|

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境:

VS2022 C++17


相关文章
|
3月前
|
传感器 机器学习/深度学习 人工智能
仿生机器人:自然界灵感的工程应用
【10月更文挑战第14天】仿生机器人作为自然界灵感与工程技术的完美结合,正逐步改变着我们的生活和工作方式。通过深入了解其设计原理、关键技术、应用领域以及未来的发展趋势,我们可以更加清晰地看到仿生机器人在推动科技创新和社会发展中的重要作用。让我们共同期待仿生机器人在未来带来的更多惊喜和变革!
|
3天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
1天前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
8天前
|
算法
|
8天前
|
算法 安全 C++
用 C++ 算法控制员工上网的软件,关键逻辑是啥?来深度解读下
在企业信息化管理中,控制员工上网的软件成为保障网络秩序与提升办公效率的关键工具。该软件基于C++语言,融合红黑树、令牌桶和滑动窗口等算法,实现网址精准过滤、流量均衡分配及异常连接监测。通过高效的数据结构与算法设计,确保企业网络资源优化配置与安全防护升级,同时尊重员工权益,助力企业数字化发展。
32 4
|
2月前
|
机器人 API 数据安全/隐私保护
AppFlow:支持飞书机器人调用百炼应用
本文介绍了如何创建并配置飞书应用及机器人,包括登录飞书开发者后台创建应用、添加应用能力和API权限,以及通过AppFlow连接流集成阿里云百炼服务,最后详细说明了如何将机器人添加到飞书群组中实现互动。
|
2月前
|
机器学习/深度学习 传感器 算法
智能机器人在工业自动化中的应用与前景###
本文探讨了智能机器人在工业自动化领域的最新应用,包括其在制造业中的集成、操作灵活性和成本效益等方面的优势。通过分析当前技术趋势和案例研究,预测了智能机器人未来的发展方向及其对工业生产模式的潜在影响。 ###
172 9
|
3月前
|
存储 并行计算 安全
C++多线程应用
【10月更文挑战第29天】C++ 中的多线程应用广泛,常见场景包括并行计算、网络编程中的并发服务器和图形用户界面(GUI)应用。通过多线程可以显著提升计算速度和响应能力。示例代码展示了如何使用 `pthread` 库创建和管理线程。注意事项包括数据同步与互斥、线程间通信和线程安全的类设计,以确保程序的正确性和稳定性。
|
3月前
|
机器学习/深度学习 人工智能 自动驾驶
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
本文介绍了AI和大模型在机器人、自动驾驶和智能座舱领域的最新应用和技术进展。涵盖多模态大语言模型在机器人控制中的应用、移动机器人(AMRs)的规模化部署、协作机器人的智能与安全性提升、AR/VR技术在机器人培训中的应用、数字孪生技术的优化作用、Rust语言在机器人编程中的崛起,以及大模型在自动驾驶中的核心地位、端到端自动驾驶解决方案、全球自动驾驶的前沿进展、智能座舱的核心技术演变和未来发展趋势。
224 2
|
3月前
|
算法 数据处理 C++
c++ STL划分算法;partition()、partition_copy()、stable_partition()、partition_point()详解
这些算法是C++ STL中处理和组织数据的强大工具,能够高效地实现复杂的数据处理逻辑。理解它们的差异和应用场景,将有助于编写更加高效和清晰的C++代码。
54 0