tf2data学习

简介: tf2data学习

numpy.random.normal(loc=0.0, scale=1.0, size=None)
作用:返回一个由size指定形状的数组,数组中的值服从 𝜇=𝑙𝑜𝑐,𝜎=𝑠𝑐𝑎𝑙𝑒 的正态分布。
numpy.random.uniform(low=0.0, high=1.0, size=None)
作用:返回一个在区间[low, high)中均匀分布的数组,size指定形状。
相关文章
|
5月前
|
编解码 人工智能 Linux
SD中的VAE,你不能不懂
要想生成一幅美丽的图片,没有VAE可不行
SD中的VAE,你不能不懂
|
6月前
|
并行计算 异构计算 Python
python代码torch.device("cuda:0" if torch.cuda.is_available() else "cpu")是什么意思?
【6月更文挑战第3天】python代码torch.device("cuda:0" if torch.cuda.is_available() else "cpu")是什么意思?
609 4
|
6月前
|
测试技术 计算机视觉
【YOLOv8改进】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块 (论文笔记+引入代码)
YOLO目标检测专栏介绍了大可分卷积核注意力模块LSKA,用于解决VAN中大卷积核效率问题。LSKA通过分解2D卷积为1D卷积降低计算复杂度和内存占用,且使模型关注形状而非纹理,提高鲁棒性。在多种任务和数据集上,LSKA表现优于ViTs和ConvNeXt,代码可在GitHub获取。基础原理包括LSKA的卷积核分解设计和计算效率优化。示例展示了LSKA模块的实现。更多详情及配置参见相关链接。
|
6月前
|
机器学习/深度学习 编解码 测试技术
【YOLOv8改进】LSKNet(Large Selective Kernel Network ):空间选择注意力 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO的有效改进和实战应用,包括卷积、主干网络、注意力机制和检测头的创新。提出的新模型LSKNet利用大型选择性核关注遥感场景的先验知识,动态调整感受野,提升目标检测效果。创新点包括LSKblock Attention、大型选择性核网络和适应性感受野调整。LSKNet在多个遥感检测基准上取得最优性能,且结构轻量。此外,文章提供了YOLOv8的LSKNet实现代码。更多详情可查阅相关专栏链接。
|
7月前
|
存储 PyTorch 算法框架/工具
torch.Storage()是什么?和torch.Tensor()有什么区别?
torch.Storage()是什么?和torch.Tensor()有什么区别?
48 1
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Paddle 点灯人 之 Tensor
Paddle 点灯人 之 Tensor
|
并行计算 PyTorch 算法框架/工具
【PyTorch】cuda()与to(device)的区别
【PyTorch】cuda()与to(device)的区别
306 0
|
并行计算 PyTorch 算法框架/工具
torch中 x数据已经使用x.to(device), 再使用x.to(device)会报错吗?
在 PyTorch 中,如果已经将一个张量 (tensor) 移到了指定的设备上,再次调用 to 方法将不会产生任何影响,也不会报错。这是因为 to 方法内部会检查当前张量所在的设备和目标设备是否一致,如果一致,则直接返回原始张量。 以下是一个简单的示例代码,演示了当我们尝试将已经被移动到 GPU 上的张量再次移动到相同的 GPU 设备时,不会引发错误:
380 0
ChIP-seq 分析:TF 结合和表观遗传状态(13)
ChIP-seq 分析:TF 结合和表观遗传状态(13)
108 0
|
并行计算 Python
TypeError: can‘t convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory
运行程序,出现报错信息 TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.。
321 0