C++基础算法前缀和和差分篇

简介: C++基础算法前缀和和差分篇

📟作者主页:慢热的陕西人

🌴专栏链接:C++算法

📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言

主要讲解了前缀和和差分算法


Ⅳ. 前缀和 和 差分

Ⅵ .Ⅰ前缀和

① 一维前缀和

就是构建一个新的数组s,用来存储另一个数组的和前i个数组元素的和。用公式表达就是:

S [ i ] = a [ 0 ] + a [ 1 ] + . . . . a [ i ] S[i] = a[0]+a[1]+ .... a[i]S[i]=a[0]+a[1]+....a[i]

这个结果我们用一次遍历就可以得到(我们的S只从1开始算起,为了方便后面的计算)

for(int i = 1; i < a.size(); ++i)
{
  s[i] = s[i - 1] + a[i];
}

具体的应用就是我们可以快速得到数组一个区间[l,r]内元素的和。

s [ l , r ] = s [ r ] = s [ l − 1 ] s[l, r] = s[r] = s[l - 1]s[l,r]=s[r]=s[l1]

对应题目:

B3645 数列前缀和 2 - 洛谷

②二维前缀和:

二维数组的前缀和就是相当于把一位数组的前缀和拓展成二维数组的前缀和。

那么我们计算s[i]的表达式为:

s [ i ] [ j ] = s [ i ] [ j − 1 ] + s [ i − 1 ] [ j ] − s [ i − 1 ] [ j − 1 ] + a [ i ] [ j ] s[i][j] = s[i][j - 1] + s[i - 1][j] - s[i - 1][j - 1] + a[i][j]s[i][j]=s[i][j1]+s[i1][j]s[i1][j1]+a[i][j]

那么我们计算一个子矩阵[[i,l],[j,r]]的公式为

s [ [ i , l ] [ j , r ] ] = s [ l ] [ r ] − s [ i − 1 ] [ r ] − s [ l ] [ j − 1 ] + s [ i − 1 ] [ j − 1 ] s[[i,l][j,r]] = s[l][r] - s[i - 1][r] - s[l][j - 1] + s[i - 1][j - 1]s[[i,l][j,r]]=s[l][r]s[i1][r]s[l][j1]+s[i1][j1]

代码:

#include<iostream>
#include<stdlib.h>
using namespace std;
const int N = 1010;
int a[N][N], s[N][N];
int main()
{
    int n, m, q;
    int x1, x2, y1, y2;
    scanf("%d%d%d", &n, &m, & q);
    for(int i = 1; i <= n; ++i)
        for (int j = 1; j <= m; ++j)
            scanf("%d", &a[i][j]);
    //计算前缀和
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= m; ++j)
            s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
    while (q--)
    {
        scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
        printf("%d",(s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]));
    }
}

Ⅳ. Ⅱ 差分

① 一维差分

首先我们明确一个原则**差分是前缀和的逆运算,首先我们构建一个数组b和一个数组a,那么我们将b数组的前缀和存储在a数组中,我们这时候称b数组就是a数组的差分**a就是b的前缀和。

不难发现差分有这样一个性质:

a[l, r]加上一个常数c等价于b[l] += cb[r + 1] -= c.

这个性质非常的重要因为我们可以将a数组中的一些O(N)的操作降为b数组中O(1)的操作;

如下例题:

代码:

#include<iostream>
#include<stdlib.h>
using namespace std;
const int N = 1000010;
int a[N], b[N];
void insert(int l, int r, int c)
{
    b[l] += c;
    b[r + 1] -= c;
}
int main()
{
    int n, m;
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
    //利用性质算出差分
    for (int i = 1; i <= n; i++) insert(i, i, a[i]);
    while (m--)
    {
        int l, r, c;
        scanf("%d%d%d", &l, &r, &c);
        insert(l, r, c);
    }
    //通过b计算经过操作后产生的a
    for (int i = 1; i <= n; ++i) b[i] += b[i - 1];
    for (int i = 1; i <= n; ++i) printf("%d ", b[i]);
    return 0;
}

②二维差分(差分矩阵)

差分矩阵和上面的一维差分的思路差不多,首先我们构建一个矩阵b和一个矩阵a,那么我们将b矩阵的前缀和存储在a矩阵中,我们这时候称b矩阵就是a矩阵的差分a就是b的前缀和。

性质上也是类似的,但是略有不同:

a[[x1, x2],[y1,y2]]加上一个常数c等价于:

b [ x 1 , y 1 ] + = c b [ x 2 , y 1 ] − = c b [ x 1 , y 2 ] − = c b [ x 2 , y 2 ] + = c b[x1,y1] += c \\ b[x2, y1] -= c\\ b[x1, y2] -= c\\ b[x2, y2] += cb[x1,y1]+=cb[x2,y1]=cb[x1,y2]=cb[x2,y2]+=c

例题:

代码:

#include<iostream>
#include<stdlib.h>
using namespace std;
const int N = 1010;
int a[N][N], b[N][N];
void insert(int x1, int y1, int x2, int y2, int c)
{
    b[x1][y1] += c;
    b[x2 + 1][y1] -= c;
    b[x1][y2  +1] -= c;
    b[x2 + 1][y2  +1] += c;
}
int main()
{
    int n, m, q;
    scanf("%d%d%d", &n, &m, &q);
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= m; ++j)
            scanf("%d", &a[i][j]);
    //利用性质构造差分
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= m; ++j)
            insert(i, j, i, j, a[i][j]);
    while (q--)
    {
        int x1, y1, x2, y2, c;
        scanf("%d%d%d%d%d", &x1, &y1, &x2, &y2, &c);
        insert(x1, y1, x2, y2, c);
    }
    //计算前缀和矩阵
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= m; ++j)
            b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
    cout << endl;
    for (int i = 1; i <= n; ++i)
    {
        for (int j = 1; j <= m; ++j)
            printf("%d ", b[i][j]);
        cout << endl;
    }
    return 0;
}

到这本篇博客的内容就到此结束了。
如果觉得本篇博客内容对你有所帮助的话,可以点赞,收藏,顺便关注一下!
如果文章内容有错误,欢迎在评论区指正

相关文章
|
2天前
|
存储 监控 算法
员工屏幕监控系统之 C++ 图像差分算法
在现代企业管理中,员工屏幕监控系统至关重要。本文探讨了其中常用的图像差分算法,该算法通过比较相邻两帧图像的像素差异,检测屏幕内容变化,如应用程序切换等。文中提供了C++实现代码,并介绍了其在实时监控、异常行为检测和数据压缩等方面的应用,展示了其实现简单、效率高的特点。
29 15
|
2天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
24 12
|
1月前
|
负载均衡 算法 安全
探秘:基于 C++ 的局域网电脑控制软件自适应指令分发算法
在现代企业信息化架构中,局域网电脑控制软件如同“指挥官”,通过自适应指令分发算法动态调整指令发送节奏与数据量,确保不同性能的终端设备高效运行。基于C++语言,利用套接字实现稳定连接和线程同步管理,结合实时状态反馈,优化指令分发策略,提升整体管控效率,保障网络稳定,助力数字化办公。
55 19
|
1月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
52 2
|
2月前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
1月前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
2月前
|
算法 安全 C++
用 C++ 算法控制员工上网的软件,关键逻辑是啥?来深度解读下
在企业信息化管理中,控制员工上网的软件成为保障网络秩序与提升办公效率的关键工具。该软件基于C++语言,融合红黑树、令牌桶和滑动窗口等算法,实现网址精准过滤、流量均衡分配及异常连接监测。通过高效的数据结构与算法设计,确保企业网络资源优化配置与安全防护升级,同时尊重员工权益,助力企业数字化发展。
65 4
|
4月前
|
算法
数据结构与算法二:栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式
这篇文章讲解了栈的基本概念及其应用,并详细介绍了中缀表达式转换为后缀表达式的算法和实现步骤。
94 3
|
4月前
|
存储 算法 C++
高精度算法(加、减、乘、除,使用c++实现)
高精度算法(加、减、乘、除,使用c++实现)
1156 0
高精度算法(加、减、乘、除,使用c++实现)
|
4月前
|
存储 算法 Java
数据结构与算法学习八:前缀(波兰)表达式、中缀表达式、后缀(逆波兰)表达式的学习,中缀转后缀的两个方法,逆波兰计算器的实现
前缀(波兰)表达式、中缀表达式和后缀(逆波兰)表达式的基本概念、计算机求值方法,以及如何将中缀表达式转换为后缀表达式,并提供了相应的Java代码实现和测试结果。
257 0
数据结构与算法学习八:前缀(波兰)表达式、中缀表达式、后缀(逆波兰)表达式的学习,中缀转后缀的两个方法,逆波兰计算器的实现