Redis+Caffeine 两级缓存(二)

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云解析 DNS,旗舰版 1个月
简介: Redis+Caffeine 两级缓存

V2.0版本

在spring项目中,提供了CacheManager接口和一些注解,允许让我们通过注解的方式来操作缓存。先来看一下常用几个注解说明:

  • @Cacheable:根据键从缓存中取值,如果缓存存在,那么获取缓存成功之后,直接返回这个缓存的结果。如果缓存不存在,那么执行方法,并将结果放入缓存中。
  • @CachePut:不管之前的键对应的缓存是否存在,都执行方法,并将结果强制放入缓存
  • @CacheEvict:执行完方法后,会移除掉缓存中的数据。

如果要使用上面这几个注解管理缓存的话,我们就不需要配置V1版本中的那个类型为Cache的Bean了,而是需要配置spring中的CacheManager的相关参数,具体参数的配置和之前一样:

@Configuration
public class CacheManagerConfig {
    @Bean
    public CacheManager cacheManager(){
        CaffeineCacheManager cacheManager=new CaffeineCacheManager();
        cacheManager.setCaffeine(Caffeine.newBuilder()
                .initialCapacity(128)
                .maximumSize(1024)
                .expireAfterWrite(60, TimeUnit.SECONDS));
        return cacheManager;
    }
}

然后在启动类上再添加上@EnableCaching注解,就可以在项目中基于注解来使用Caffeine的缓存支持了。下面,再次对Service层代码进行改造。

首先,还是改造查询方法,在方法上添加@Cacheable注解:

@Cacheable(value = "order",key = "#id")
//@Cacheable(cacheNames = "order",key = "#p0")
public Order getOrderById(Long id) {
    String key= CacheConstant.ORDER + id;
    //先查询 Redis
    Object obj = redisTemplate.opsForValue().get(key);
    if (Objects.nonNull(obj)){
        log.info("get data from redis");
        return (Order) obj;
    }
    // Redis没有则查询 DB
    log.info("get data from database");
    Order myOrder = orderMapper.selectOne(new LambdaQueryWrapper<Order>()
            .eq(Order::getId, id));
    redisTemplate.opsForValue().set(key,myOrder,120, TimeUnit.SECONDS);
    return myOrder;
}

@Cacheable注解的属性多达9个,好在我们日常使用时只需要配置两个常用的就可以了。其中valuecacheNames互为别名关系,表示当前方法的结果会被缓存在哪个Cache上,应用中通过cacheName来对Cache进行隔离,每个cacheName对应一个Cache实现。value和cacheNames可以是一个数组,绑定多个Cache。

而另一个重要属性key,用来指定缓存方法的返回结果时对应的key,这个属性支持使用SpringEL表达式。通常情况下,我们可以使用下面几种方式作为key:

#参数名
#参数对象.属性名
#p参数对应下标

在上面的代码中,我们看到添加了@Cacheable注解后,在代码中只需要保留原有的业务处理逻辑和操作Redis部分的代码即可,Caffeine部分的缓存就交给spring处理了。

下面,我们再来改造一下更新方法,同样,使用@CachePut注解后移除掉手动更新Cache的操作:

@CachePut(cacheNames = "order",key = "#order.id")
public Order updateOrder(Order order) {
    log.info("update order data");
    orderMapper.updateById(order);
    //修改 Redis
    redisTemplate.opsForValue().set(CacheConstant.ORDER + order.getId(),
            order, 120, TimeUnit.SECONDS);
    return order;
}

注意,这里和V1版本的代码有一点区别,在之前的更新操作方法中,是没有返回值的void类型,但是这里需要修改返回值的类型,否则会缓存一个空对象到缓存中对应的key上。当下次执行查询操作时,会直接返回空对象给调用方,而不会执行方法中查询数据库或Redis的操作。

最后,删除方法的改造就很简单了,使用@CacheEvict注解,方法中只需要删除Redis中的缓存即可:

@CacheEvict(cacheNames = "order",key = "#id")
public void deleteOrder(Long id) {
    log.info("delete order");
    orderMapper.deleteById(id);
    redisTemplate.delete(CacheConstant.ORDER + id);
}

可以看到,借助spring中的CacheManager和Cache相关的注解,对V1版本的代码经过改进后,可以把全手动操作两级缓存的强入侵代码方式,改进为本地缓存交给spring管理,Redis缓存手动修改的半入侵方式。那么,还能进一步改造,使之成为对业务代码完全无入侵的方式吗?

V3.0版本

模仿spring通过注解管理缓存的方式,我们也可以选择自定义注解,然后在切面中处理缓存,从而将对业务代码的入侵降到最低。

首先定义一个注解,用于添加在需要操作缓存的方法上:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface DoubleCache {
    String cacheName();
    String key(); //支持springEl表达式
    long l2TimeOut() default 120;
    CacheType type() default CacheType.FULL;
}

我们使用cacheName + key作为缓存的真正key(仅存在一个Cache中,不做CacheName隔离),l2TimeOut为可以设置的二级缓存Redis的过期时间,type是一个枚举类型的变量,表示操作缓存的类型,枚举类型定义如下:

public enum CacheType {
    FULL,   //存取
    PUT,    //只存
    DELETE  //删除
}

因为要使key支持springEl表达式,所以需要写一个方法,使用表达式解析器解析参数:

public static String parse(String elString, TreeMap<String,Object> map){
    elString=String.format("#{%s}",elString);
    //创建表达式解析器
    ExpressionParser parser = new SpelExpressionParser();
    //通过evaluationContext.setVariable可以在上下文中设定变量。
    EvaluationContext context = new StandardEvaluationContext();
    map.entrySet().forEach(entry->
        context.setVariable(entry.getKey(),entry.getValue())
    );
    //解析表达式
    Expression expression = parser.parseExpression(elString, new TemplateParserContext());
    //使用Expression.getValue()获取表达式的值,这里传入了Evaluation上下文
    String value = expression.getValue(context, String.class);
    return value;
}

参数中的elString对应的就是注解中key的值,map是将原方法的参数封装后的结果。简单进行一下测试:

public void test() {
    String elString="#order.money";
    String elString2="#user";
    String elString3="#p0";   
    TreeMap<String,Object> map=new TreeMap<>();
    Order order = new Order();
    order.setId(111L);
    order.setMoney(123D);
    map.put("order",order);
    map.put("user","Hydra");
    String val = parse(elString, map);
    String val2 = parse(elString2, map);
    String val3 = parse(elString3, map);
    System.out.println(val);
    System.out.println(val2);
    System.out.println(val3);
}

执行结果如下,可以看到支持按照参数名称、参数对象的属性名称读取,但是不支持按照参数下标读取,暂时留个小坑以后再处理。

123.0
Hydra
null

至于Cache相关参数的配置,我们沿用V1版本中的配置即可。准备工作做完了,下面我们定义切面,在切面中操作Cache来读写Caffeine的缓存,操作RedisTemplate读写Redis缓存。

@Slf4j @Component @Aspect 
@AllArgsConstructor
public class CacheAspect {
    private final Cache cache;
    private final RedisTemplate redisTemplate;
    @Pointcut("@annotation(com.cn.dc.annotation.DoubleCache)")
    public void cacheAspect() {
    }
    @Around("cacheAspect()")
    public Object doAround(ProceedingJoinPoint point) throws Throwable {
        MethodSignature signature = (MethodSignature) point.getSignature();
        Method method = signature.getMethod();
        //拼接解析springEl表达式的map
        String[] paramNames = signature.getParameterNames();
        Object[] args = point.getArgs();
        TreeMap<String, Object> treeMap = new TreeMap<>();
        for (int i = 0; i < paramNames.length; i++) {
            treeMap.put(paramNames[i],args[i]);
        }
        DoubleCache annotation = method.getAnnotation(DoubleCache.class);
        String elResult = ElParser.parse(annotation.key(), treeMap);
        String realKey = annotation.cacheName() + CacheConstant.COLON + elResult;
        //强制更新
        if (annotation.type()== CacheType.PUT){
            Object object = point.proceed();
            redisTemplate.opsForValue().set(realKey, object,annotation.l2TimeOut(), TimeUnit.SECONDS);
            cache.put(realKey, object);
            return object;
        }
        //删除
        else if (annotation.type()== CacheType.DELETE){
            redisTemplate.delete(realKey);
            cache.invalidate(realKey);
            return point.proceed();
        }
        //读写,查询Caffeine
        Object caffeineCache = cache.getIfPresent(realKey);
        if (Objects.nonNull(caffeineCache)) {
            log.info("get data from caffeine");
            return caffeineCache;
        }
        //查询Redis
        Object redisCache = redisTemplate.opsForValue().get(realKey);
        if (Objects.nonNull(redisCache)) {
            log.info("get data from redis");
            cache.put(realKey, redisCache);
            return redisCache;
        }
        log.info("get data from database");
        Object object = point.proceed();
        if (Objects.nonNull(object)){
            //写入Redis
            redisTemplate.opsForValue().set(realKey, object,annotation.l2TimeOut(), TimeUnit.SECONDS);
            //写入Caffeine
            cache.put(realKey, object);        
        }
        return object;
    }
}

切面中主要做了下面几件工作:

  • 通过方法的参数,解析注解中key的springEl表达式,组装真正缓存的key
  • 根据操作缓存的类型,分别处理存取、只存、删除缓存操作
  • 删除和强制更新缓存的操作,都需要执行原方法,并进行相应的缓存删除或更新操作
  • 存取操作前,先检查缓存中是否有数据,如果有则直接返回,没有则执行原方法,并将结果存入缓存

修改Service层代码,代码中只保留原有业务代码,再添加上我们自定义的注解就可以了:

@DoubleCache(cacheName = "order", key = "#id",
        type = CacheType.FULL)
public Order getOrderById(Long id) {
    Order myOrder = orderMapper.selectOne(new LambdaQueryWrapper<Order>()
            .eq(Order::getId, id));
    return myOrder;
}
@DoubleCache(cacheName = "order",key = "#order.id",
        type = CacheType.PUT)
public Order updateOrder(Order order) {
    orderMapper.updateById(order);
    return order;
}
@DoubleCache(cacheName = "order",key = "#id",
        type = CacheType.DELETE)
public void deleteOrder(Long id) {
    orderMapper.deleteById(id);
}

到这里,基于切面操作缓存的改造就完成了,Service的代码也瞬间清爽了很多,让我们可以继续专注于业务逻辑处理,而不用费心去操作两级缓存了。

本文按照对业务入侵的递减程度,依次介绍了三种管理两级缓存的方法。至于在项目中是否需要使用二级缓存,需要考虑自身业务情况,如果Redis这种远程缓存已经能够满足你的业务需求,那么就没有必要再使用本地缓存了。毕竟实际使用起来远没有那么简单,本文中只是介绍了最基础的使用,实际中的并发问题、事务的回滚问题都需要考虑,还需要思考什么数据适合放在一级缓存、什么数据适合放在二级缓存等等的其他问题。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
14天前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
15天前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
8天前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
25 5
|
23天前
|
缓存 NoSQL Redis
Redis 缓存使用的实践
《Redis缓存最佳实践指南》涵盖缓存更新策略、缓存击穿防护、大key处理和性能优化。包括Cache Aside Pattern、Write Through、分布式锁、大key拆分和批量操作等技术,帮助你在项目中高效使用Redis缓存。
132 22
|
22天前
|
缓存 NoSQL 中间件
redis高并发缓存中间件总结!
本文档详细介绍了高并发缓存中间件Redis的原理、高级操作及其在电商架构中的应用。通过阿里云的角度,分析了Redis与架构的关系,并展示了无Redis和使用Redis缓存的架构图。文档还涵盖了Redis的基本特性、应用场景、安装部署步骤、配置文件详解、启动和关闭方法、systemctl管理脚本的生成以及日志警告处理等内容。适合初学者和有一定经验的技术人员参考学习。
121 7
|
27天前
|
存储 缓存 监控
利用 Redis 缓存特性避免缓存穿透的策略与方法
【10月更文挑战第23天】通过以上对利用 Redis 缓存特性避免缓存穿透的详细阐述,我们对这一策略有了更深入的理解。在实际应用中,我们需要根据具体情况灵活运用这些方法,并结合其他技术手段,共同保障系统的稳定和高效运行。同时,要不断关注 Redis 缓存特性的发展和变化,及时调整策略,以应对不断出现的新挑战。
62 10
|
1月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
|
1月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
|
1月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
77 6
|
1月前
|
缓存 NoSQL 关系型数据库
redis和缓存及相关问题和解决办法 什么是缓存预热、缓存穿透、缓存雪崩、缓存击穿
本文深入探讨了Redis缓存的相关知识,包括缓存的概念、使用场景、可能出现的问题(缓存预热、缓存穿透、缓存雪崩、缓存击穿)及其解决方案。
186 0
redis和缓存及相关问题和解决办法 什么是缓存预热、缓存穿透、缓存雪崩、缓存击穿
下一篇
无影云桌面