最小生成树的拓展应用

简介: 最小生成树的拓展应用


1.新的开始

信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn)

假如自己建个发电站相当于从一个虚拟原点向他有条边,然后做跑一遍最小生成树即可

#include<bits/stdc++.h>
using namespace std;
const int N=310;
int w[N][N];
int n;
int dist[N];
bool st[N];
int prim()
{
    memset(dist,0x3f,sizeof dist);
    dist[0]=0;
    int res=0;
    for(int i=0;i<=n;i++)//因为加上虚拟原点就有n+1个点,则需要循环n+1次
    {
        int t=-1;
        for(int j=0;j<=n;j++)//遍历所有点
            if(!st[j]&&(t==-1||dist[j]<dist[t]))
                 t=j;
       res+=dist[t];
       st[t]=true;
       for(int j=0;j<=n;j++) dist[j]=min(dist[j],w[t][j]);//遍历所有点
    }
    return res;
}
int main()
{
   cin>>n;
   for(int i=1;i<=n;i++)
   {
       cin>>w[0][i];
       w[i][0]=w[0][i];//从虚拟原点0向基站建边
   }
   for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++)
         cin>>w[i][j];//读入其他边
   cout<<prim()<<endl;//跑一遍prim算法
  return 0;
}


2.北极通讯网络

信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn)

#include<bits/stdc++.h>
using namespace std;
#define x first
#define y second
typedef pair<int,int> pii;
const int N=510,M=N*N;
pii q[N];
int n,k,m;
struct Edge
{
    int a,b;
    double w;
    bool operator < (const Edge&t) const
    {
        return w<t.w;
    }
}e[M];
int p[N];
int find(int x)
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}
double get(pii a,pii b)//获取两点之间的距离
{
    int c=(a.x-b.x),d=(a.y-b.y);
    return sqrt(c*c+d*d);
}
int main()
{
   cin>>n>>k;
   for(int i=1;i<=n;i++) cin>>q[i].x>>q[i].y;
   for(int i=1;i<=n;i++) p[i]=i;
   for(int i=1;i<=n;i++)
      for(int j=1;j<i;j++)
              e[m++]={i,j,get(q[i],q[j])};//获取两两之间的距离
    sort(e,e+m);//排序
    int res=n;//刚开始有n个集合,也就是还没集合合并的时候
    double ans=0;
    for(int i=0;i<m;i++)
    {
        if(res<=k) break;//假如剩下的集合已经小于等于k了,则就是答案
        int a=find(e[i].a),b=find(e[i].b);
        double w=e[i].w;
        if(a!=b)//合并集合
        {
            p[a]=b;
            res--;//集合数少一个
        }
         ans=w;//答案就是当前的w
    }
    printf("%.2lf\n",ans);
  return 0;
}

3.走廊泼水节

346. 走廊泼水节 - AcWing题库

经分析,每次添加的新边都大于等于当前w+1,答案+=(size[a]*size[b]-1)*(w+1)

 

#include<bits/stdc++.h>
using namespace std;
const int N=6010;
struct Edge
{
    int a,b,w;
    bool operator <(const Edge&t)const
    {
        return w<t.w;
    }
}e[N];
int n;
int p[N],sizep[N];
int find(int x)
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}
void solve()
{
    cin>>n;
    for(int i=0;i<=n;i++) p[i]=i,sizep[i]=1;
    for(int i=0;i<n-1;i++)
    {
        int a,b,w;
        cin>>a>>b>>w;
        e[i]={a,b,w};
    }
    sort(e,e+n-1);
    int res=0;
    for(int i=0;i<n-1;i++)
    {
        int a=find(e[i].a),b=find(e[i].b),w=e[i].w;
        if(a!=b)
        {
            res+=(sizep[a]*sizep[b]-1)*(w+1);//答案就是两个不同集合的size相乘-1在乘w+1
            sizep[b]+=sizep[a];//把a的size加到b中
            p[a]=b;//把a的祖宗节点接到b中
        }
    }
    cout<<res<<endl;
}
int main()
{
    int T;
    cin>>T;
    while(T--) solve();//T组测试样例
  return 0;
}


4.秘密的牛奶运输

信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn)

 

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2010,M=20010;
int n,m;
int h[N],e[M*2],ne[M*2],w[M*2],idx;
int dist[N][N];
void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
struct Edge
{
    int a,b,w;
    bool f;
    bool operator <(const Edge&t)const
    {
        return w<t.w;
    }
}edge[M];
int p[N];
int find(int x)
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}
void dfs(int u,int f,int maxd,int d[])//u是当前节点,f是父节点,maxd是路径上的最大边,d是要更新的距离
{
    d[u]=maxd;//标记这个点的最大边是maxd
    for(int i=h[u];~i;i=ne[i])
    {
        int j=e[i];
        if(j==f) continue;//假如是父节点则不用搜,避免重复搜索
        dfs(j,u,max(maxd,w[i]),d);//更新j这个点
    }
}
int main()
{
    cin>>n>>m;
    memset(h,-1,sizeof h);
    for(int i=0;i<=n;i++) p[i]=i;
    for(int i=0;i<m;i++)
    {
        int a,b,w;
        cin>>a>>b>>w;
        edge[i]={a,b,w};
    }
    sort(edge,edge+m);
    ll sum=0,res=1e18;
    for(int i=0;i<m;i++)
    {
        int a=edge[i].a,b=edge[i].b,w=edge[i].w;
        int pa=find(a),pb=find(b);
        if(pa!=pb)
        {
            sum+=w;
            p[pa]=pb;
            add(a,b,w),add(b,a,w);//加的是最小生成树
            edge[i].f=true;//标记是树边
        }
    }
    for(int i=1;i<=n;i++) dfs(i,-1,0,dist[i]);//求一遍以i为父节点的与其他点之间的最大距离
    for(int i=0;i<m;i++)
      if(!edge[i].f)//假如是非树边
        {
            int a=edge[i].a,b=edge[i].b,w=edge[i].w;
            if(dist[a][b]<w)//并且满足w大于dist[a][b],也就是满足边数和大于最小生成树的情况
            {
               res=min(res,sum+w-dist[a][b]);//更新答案
            }
        }
    cout<<res<<endl;
  return 0;
}






相关文章
|
12月前
|
算法
单源最短路的拓展应用
单源最短路的拓展应用
70 0
|
12月前
|
人工智能 BI
树状数组及其拓展
树状数组及其拓展
53 0
|
5月前
|
算法 定位技术
探寻最短路径之谜:Dijkstra算法详解
探寻最短路径之谜:Dijkstra算法详解
|
6月前
|
算法
最短路径的两大算法
最短路径的两大算法
|
6月前
|
算法 测试技术 C#
【深度优化】【广度优先】【状态压缩】864. 获取所有钥匙的最短路径
【深度优化】【广度优先】【状态压缩】864. 获取所有钥匙的最短路径
|
算法 定位技术
探索最短路径问题:寻找优化路线的算法解决方案
探索最短路径问题:寻找优化路线的算法解决方案
190 0
|
算法
【茶话数据结构】查找最短路径——Dijkstra算法详解(保姆式详细图解,步步紧逼,保你学会)
【茶话数据结构】查找最短路径——Dijkstra算法详解(保姆式详细图解,步步紧逼,保你学会)
199 0
|
算法 数据格式 异构计算
|
算法 C++
算法基础系列第三章——图论之最短路径问题(2)
算法基础系列第三章——图论之最短路径问题(2)
191 0
算法基础系列第三章——图论之最短路径问题(2)