Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2 3 4
Sample Output
7 6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
输出N^N结果的最右边的一位数
思路:
只需找出循环节便可。
代码:
#include<stdio.h> int main() { int T; scanf("%d",&T); while(T--) { int n,i,k=1,f[10]={0},F[10]; scanf("%d",&n); int a=n%10,b=n%10; f[a]=1; F[k]=a; for(i=0;i<n;i++) { a=(a*b)%10; if(f[a]==0) {f[a]=1;k++;F[k]=a;} else break; } F[0]=F[k]; printf("%d\n",F[n%k]); } return 0; }