Linux性能调优 —— 内存篇

简介: 大多数计算机用的主存都是动态随机访问内存(DRAM),只有内核才可以直接访问物理内存。Linux内核给每个进程提供了一个独立的虚拟地址空间,并且这个地址空间是连续的。这样进程就可以很方便的访问内存(虚拟内存)。

Linux内存的工作原理


内存映射的概念


 大多数计算机用的主存都是动态随机访问内存(DRAM),只有内核才可以直接访问物理内存。Linux内核给每个进程提供了一个独立的虚拟地址空间,并且这个地址空间是连续的。这样进程就可以很方便的访问内存(虚拟内存)。


 虚拟地址空间的内部分为内核空间和用户空间两部分,不同字长的处理器地址空间的范围不同。32位系统内核空间占用1G,用户空间占3G。64位系统内核空间和用户空间都是128T,分别占内存空间的最高和最低处,中间部分为未定义。


 并不是所有的虚拟内存都会分配物理内存,只有实际使用的才会。分配后的物理内存通过内存映射管理。为了完成内存映射,内核为每个进程都维护了一个页表,记录虚拟地址和物理地址的映射关系。页表实际存储在CPU的内存管理单元MMU中,处理器可以直接通过硬件找出要访问的内存。


 当进程访问的虚拟地址在页表中查不到时,系统会产生一个缺页异常,进入内核空间分配物理内存,更新进程页表,进行页面置换,再返回用户空间恢复进程的运行。


 MMU以页为单位管理内存,页大小4KB。为了解决页表项过多问题Linux提供了多级页表和HugePage的机制。


 Linux还使用内存中的一部分来存储文件系统和块设备的缓存,以加速对文件和块设备的访问。这被称为文件系统缓存或页缓存。


 Linux可以将不常用的内存页面交换到磁盘上的交换分区(swap partition)中,以释放物理内存供其他进程使用。交换空间的使用是在物理内存不足时的一种手段,但过度使用交换会降低性能。


虚存空间分布


 用户空间内存从低到高是五种不同的内存段:


 只读段 代码和常量等


 数据段 全局变量等


 堆 动态分配的内存,从低地址开始向上增长


 文件映射 动态库、共享内存等,从高地址开始向下增长


 栈 包括局部变量和函数调用的上下文等,栈的大小是固定的。一般8MB


内存分配与回收


分配


 针对小块内存(<128K),通过移动堆顶位置来分配。内存释放后不立即归还内存,而是被缓存起来。


 针对大块内存(>128K),直接用内存映射来分配,即在文件映射段找一块空闲内存分配。


 前者的缓存可以减少缺页异常的发生,提高内存访问效率。但是由于内存没有归还系统,在内存工作繁忙时,频繁的内存分配/释放会造成内存碎片。


 后者在释放时直接归还系统,所以每次都会发生缺页异常。在内存工作繁忙时,频繁内存分配会导致大量缺页异常,使内核管理负担增加。


回收


 内存紧张时,系统通过以下方式来回收内存:


 · 回收缓存:LRU算法回收最近最少使用的内存页面;

 · 回收不常访问内存:把不常用的内存通过交换分区写入磁盘

 · 杀死进程


内存查看与分析


查看内存使用情况


命令:free

 输入以下命令:


free -h


  输出如下:


              总计         已用        空闲      共享    缓冲/缓存    可用
内存:        62Gi       9.2Gi        22Gi       1.4Gi        31Gi        51Gi
交换:       2.0Gi       1.9Gi        62Mi


总计 (Total):物理内存的总容量。在这个示例中,系统总共有62 GB的物理内存。


已用 (Used):当前已被系统和进程使用的内存量。在这个示例中,已经使用了9.2 GB的内存。


空闲 (Free):当前未被使用的内存量。在这个示例中,有22 GB的内存是空闲的。


共享 (Shared):被多个进程共享的内存量。在这个示例中,有1.4 GB的内存被多个进程共享。


缓冲/缓存 (Buffer/Cache):用于文件系统缓存和磁盘I/O缓冲的内存量。在这个示例中,有31 GB的内存被用于缓冲和缓存。


可用 (Available):系统估计可供新进程使用的内存量,包括未来可能被释放的内存。在这个示例中,有51 GB的内存被估计为可用。


 关于交换空间:


交换总量 (Total Swap):系统中交换空间的总容量。在这个示例中,系统总共有2.0 GB的交换空间。


已用交换 (Used Swap):当前已经在交换空间中使用的量。在这个示例中,已经使用了1.9 GB的交换空间。


剩余交换 (Free Swap):剩余未被使用的交换空间量。在这个示例中,还有62 MB的交换空间是空闲的。


 总体来说,系统的物理内存使用情况看起来还相对充裕,因为大部分内存都是空闲的,而且有相当数量的缓冲和缓存可供使用。交换空间也仅有少量被使用,这是良好的迹象,因为过度使用交换空间可能会影响性能。如果系统性能仍然良好,那么当前的内存和交换空间使用情况可能是可接受的。但是,如果系统出现性能问题,可能需要进一步分析进程和服务的内存使用情况,以确定是否需要采取进一步的措施,如优化或增加内存。


命令:vmstat


 输入以下命令,表示每隔5秒统计一次:


vmstat 5

  输出如下:



 结果说明


r 表示运行队列(就是说多少个进程真的分配到CPU),我测试的服务器目前CPU比较空闲,没什么程序在跑,当这个值超过了CPU数目,就会出现CPU瓶颈了。这个也和top的负载有关系,一般负载超过了3就比较高,超过了5就高,超过了10就不正常了,服务器的状态很危险。top的负载类似每秒的运行队列。如果运行队列过大,表示你的CPU很繁忙,一般会造成CPU使用率很高。


b 表示阻塞的进程,这个不多说,进程阻塞,大家懂的。


swpd 虚拟内存已使用的大小,如果大于0,表示你的机器物理内存不足了,如果不是程序内存泄露的原因,那么你该升级内存了或者把耗内存的任务迁移到其他机器。


free 空闲的物理内存的大小。


buff Linux/Unix系统是用来存储,目录里面有什么内容,权限等的缓存


cache cache直接用来记忆我们打开的文件,给文件做缓冲,这里是Linux/Unix的聪明之处,把空闲的物理内存的一部分拿来做文件和目录的缓存,是为了提高 程序执行的性能,当程序使用内存时,buffer/cached会很快地被使用。


si 每秒从磁盘读入虚拟内存的大小,如果这个值大于0,表示物理内存不够用或者内存泄露了,要查找耗内存进程解决掉。我的机器内存充裕,一切正常。


so 每秒虚拟内存写入磁盘的大小,如果这个值大于0,同上。


bi 块设备每秒接收的块数量,这里的块设备是指系统上所有的磁盘和其他块设备,默认块大小是1024byte,我本机上没什么IO操作,所以一直是0,但是我曾在处理拷贝大量数据(2-3T)的机器上看过可以达到140000/s,磁盘写入速度差不多140M每秒


bo 块设备每秒发送的块数量,例如我们读取文件,bo就要大于0。bi和bo一般都要接近0,不然就是IO过于频繁,需要调整。


in 每秒CPU的中断次数,包括时间中断


cs 每秒上下文切换次数,例如我们调用系统函数,就要进行上下文切换,线程的切换,也要进程上下文切换,这个值要越小越好,太大了,要考虑调低线程或者进程的数目,例如在apache和nginx这种web服务器中,我们一般做性能测试时会进行几千并发甚至几万并发的测试,选择web服务器的进程可以由进程或者线程的峰值一直下调,压测,直到cs到一个比较小的值,这个进程和线程数就是比较合适的值了。系统调用也是,每次调用系统函数,我们的代码就会进入内核空间,导致上下文切换,这个是很耗资源,也要尽量避免频繁调用系统函数。上下文切换次数过多表示你的CPU大部分浪费在上下文切换,导致CPU干正经事的时间少了,CPU没有充分利用,是不可取的。


us 用户CPU时间,我曾经在一个做加密解密很频繁的服务器上,可以看到us接近100,r运行队列达到80(机器在做压力测试,性能表现不佳)。


sy 系统CPU时间,如果太高,表示系统调用时间长,例如是IO操作频繁。


id 空闲CPU时间,一般来说,id + us + sy = 100,一般我认为id是空闲CPU使用率,us是用户CPU使用率,sy是系统CPU使用率。


wt 等待IO CPU时间


命令:top


 输入以下命令,随后再输入M表示按照内存占用率排序:


top


  输出如下:



  从上图可以发现,内存占用率较高的是jsvcmysqljsvc可能并不知道是个什么命令,所以我们进一步分析单个进程。


分析单个进程


命令:ps -p


  查看进程1180的运行信息:


ps -p 1180 -o pid,ppid,%cpu,%mem,cmd


  输出如下:



  cmd表示查看这个进程的执行命令,最终锁定1180进程是tomcat的守护进程。

相关文章
|
8天前
|
缓存 Linux
linux 手动释放内存
在 Linux 系统中,内存管理通常自动处理,但业务繁忙时缓存占用过多可能导致内存不足,影响性能。此时可在业务闲时手动释放内存。
58 17
|
11天前
|
消息中间件 Linux
Linux:进程间通信(共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)
通过上述讲解和代码示例,您可以理解和实现Linux系统中的进程间通信机制,包括共享内存、消息队列和信号量。这些机制在实际开发中非常重要,能够提高系统的并发处理能力和数据通信效率。希望本文能为您的学习和开发提供实用的指导和帮助。
71 20
|
1月前
|
运维 监控 Linux
BPF及Linux性能调试探索初探
BPF技术从最初的网络数据包过滤发展为强大的系统性能优化工具,无需修改内核代码即可实现实时监控、动态调整和精确分析。本文深入探讨BPF在Linux性能调试中的应用,介绍bpftune和BPF-tools等工具,并通过具体案例展示其优化效果。
57 14
|
1月前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
1月前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
151 7
|
1月前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
2月前
|
缓存 Ubuntu Linux
Linux环境下测试服务器的DDR5内存性能
通过使用 `memtester`和 `sysbench`等工具,可以有效地测试Linux环境下服务器的DDR5内存性能。这些工具不仅可以评估内存的读写速度,还可以检测内存中的潜在问题,帮助确保系统的稳定性和性能。通过合理配置和使用这些工具,系统管理员可以深入了解服务器内存的性能状况,为系统优化提供数据支持。
65 4
|
2月前
|
存储 算法 安全
深入理解Linux内核的内存管理机制
本文旨在深入探讨Linux操作系统内核的内存管理机制,包括其设计理念、实现方式以及优化策略。通过详细分析Linux内核如何处理物理内存和虚拟内存,揭示了其在高效利用系统资源方面的卓越性能。文章还讨论了内存管理中的关键概念如分页、交换空间和内存映射等,并解释了这些机制如何协同工作以提供稳定可靠的内存服务。此外,本文也探讨了最新的Linux版本中引入的一些内存管理改进,以及它们对系统性能的影响。
|
2月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
485 1
|
1月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。